【題目】已知函數(shù)f(x)=x2+tx+1(其中實數(shù)t>0).
(1)已知實數(shù)x1,x2∈[﹣1,1],且x1<x2.若t=3,試比較x1f(x1)+x2f(x2)與x1f(x2)+x2f(x1)的大小關(guān)系,并證明你的結(jié)論;
(2)記g(x),若存在非負實數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,求實數(shù)t的取值范圍.
【答案】(1)x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);見解析(2)[22,25).
【解析】
(1)利用作差比較法,結(jié)合函數(shù)f(x)的單調(diào)性進行求解即可;
(2)存在非負實數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,因此有成立,求出g(x)的表達式,利用基本不等式,分類討論求出的最值,最后求出實數(shù)t的取值范圍.
(1)x1f(x1)+x2f(x2)﹣x1f(x2)﹣x2f(x1)=(x1﹣x2)(f(x1)﹣f(x2)),
∵t=3,
∴f(x)=x2+3x+1在[﹣1,1]上單調(diào)遞增,
由x1,x2∈[﹣1,1],且x1<x2知,f(x1)<f(x2),
∴(x1﹣x2)(f(x1)﹣f(x2))>0,
∴x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);
(2)∵存在非負實數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,
∴,
下面求的最值,
當x=0時,g(0)=1;
當x>0時,,
∵,
∴,
①當t=1時,g(x)=1,不合題意;
②當0<t<1時,,故函數(shù)g(x)的值域為,
可得,解得(不符,舍去);
③當t>1時,,故函數(shù)g(x)的值域為,
可得,解得22≤t<25;
綜上所述,實數(shù)t的取值范圍為[22,25).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“互聯(lián)網(wǎng)+”時代的今天,移動互聯(lián)快速發(fā)展,智能手機(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價格卻不斷下降,遠低于蘋果;智能手機成為了生活中必不可少的工具,學(xué)生是對新事物和新潮流反應(yīng)最快的一個群體之一,越來越多的學(xué)生在學(xué)校里使用手機,為了解手機在學(xué)生中的使用情況,對某學(xué)校高二年級名同學(xué)使用手機的情況進行調(diào)查,針對調(diào)查中獲得的“每天平均使用手機進行娛樂活動的時間”進行分組整理得到如下的數(shù)據(jù):
使用時間(小時) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
所占比例 | 4% | 10% | 31% | 16% | 12% | 2% |
(1)求表中的值;
(2)從該學(xué)校隨機選取一名同學(xué),能否根據(jù)題目中所給信息估計出這名學(xué)生每天平均使用手機進行娛樂活動小于小時的概率?若能,請算出這個概率;若不能,請說明理由;
(3)若從使用手機小時和小時的兩組中任取兩人,調(diào)查問卷,看看他們對使用手機進行娛樂活動的看法,求這人都使用小時的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.
(1)求一件手工藝品質(zhì)量為B級的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.
①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;
②記1件手工藝品的利潤為X元,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中是自然對數(shù)的底數(shù).
(1)求函數(shù)在點處的切線方程;
(2)若不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是( )
A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對立事件
B.甲的不同的選法種數(shù)為15
C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是
D.乙、丙兩名同學(xué)都選物理的概率是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.
(1)求的解析式;
(2)若方程有兩個實根,且,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com