在△ABC中,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為,,.

(1)求的最大值及的取值范圍;

(2)求函數(shù)的最大值和最小值.

 

【答案】

(Ⅰ)的最大值為16,及的取值范圍0<;(Ⅱ)最大值為3,最小值為2.

【解析】

試題分析:(Ⅰ)求的最大值及的取值范圍,由向量的數(shù)量積,即,由此可想到利用余弦定理求出,通過基本不等式,可求得b•c的最大值,再結(jié)合,可求出的取值范圍;(Ⅱ)求函數(shù)的最大值和最小值,可利用二倍角的正弦函數(shù)化簡(jiǎn)函數(shù),這樣化 為一個(gè)角的一個(gè)三角函數(shù)的形式,通過角的范圍0<,利用正弦函數(shù)的最值,從而求出函數(shù)的最大值和最小值.

試題解析:(Ⅰ)             

   所以  ,即的最大值為16

  所以  , 又0<  所以0< 

(Ⅱ)

因0<,所以

當(dāng)   即時(shí),

當(dāng)    即時(shí),

考點(diǎn):正弦函數(shù)的圖象;平面向量數(shù)量積的運(yùn)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊(cè)答案