【題目】已知函數(shù),其中a,.
當(dāng)時(shí),若在處取得極小值,求a的值;
當(dāng)時(shí).
若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;
若存在實(shí)數(shù),使得,求b的取值范圍.
【答案】(1)-2;(2)①;②.
【解析】
(1)代入b的值,求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的極值點(diǎn),從而求出a的值即可;
(2)代入a的值,①求出函數(shù)的導(dǎo)數(shù),通過(guò)討論b的范圍求出函數(shù)的單調(diào)區(qū)間,從而確定b的范圍即可;
②通過(guò)討論b的范圍,求出函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的單調(diào)性確定b的范圍即可.
(1)當(dāng)時(shí),因?yàn)?/span>,所以.
因?yàn)?/span>在處取得極小值,所以,解得:.
此時(shí),,
當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增.
所以在處取得極小值.
所以符合題意.
(2)當(dāng)時(shí),因?yàn)?/span>,
所以.
令.
①因?yàn)?/span>在上單調(diào)遞增,所以在上恒成立,
即在上恒成立.
當(dāng)時(shí),則,滿足題意.
當(dāng)時(shí),因?yàn)?/span>的對(duì)稱軸為,
所以,解得或.
綜上,實(shí)數(shù)的取值范圍為.
②當(dāng)時(shí),,與題意不符.
當(dāng)時(shí),取,則.
令,則,
當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減,
所以,即.
所以,
所以符合題意.
當(dāng)時(shí),
因?yàn)?/span>在遞增且
所以在上恒成立,所以在上單調(diào)遞增,
所以恒成立,與題意不符.
當(dāng)時(shí),
因?yàn)?/span>,,
由零點(diǎn)存在性原理可知,存在,使得,
所以當(dāng)時(shí),,單調(diào)遞減,
取,則,符合題意.
綜上可知,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)指出的周期、振幅、初相、對(duì)稱軸并寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)說(shuō)明此函數(shù)圖象可由,上的圖象經(jīng)怎樣的變換得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理)設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率.
(2)求ξ的分布列和數(shù)學(xué)期望.
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求的取值范圍;
(2)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光對(duì)物體的照度與光的強(qiáng)度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為均為正常數(shù)如圖,強(qiáng)度分別為8,1的兩個(gè)光源A,B之間的距離為10,物體P在連結(jié)兩光源的線段AB上不含A,若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當(dāng)物體P在線段AB上何處時(shí),可使物體P受到A,B兩光源的總照度最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,且直線是其圖象的一條對(duì)稱軸.
(1)求函數(shù)的解析式;
(2)在中,角、、所對(duì)的邊分別為、、,且,,若角滿足,求的取值范圍;
(3)將函數(shù)的圖象向右平移個(gè)單位,再將所得的圖象上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍后所得到的圖象對(duì)應(yīng)的函數(shù)記作,已知常數(shù),,且函數(shù)在內(nèi)恰有個(gè)零點(diǎn),求常數(shù)與的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,摩天輪上的一點(diǎn)在時(shí)刻距離地面的高度滿足,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時(shí)針做勻速轉(zhuǎn)動(dòng),每6分鐘轉(zhuǎn)一圈,點(diǎn)的起始位置在摩天輪的最低點(diǎn)處.
(1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;
(2)在摩天輪從最低點(diǎn)開(kāi)始計(jì)時(shí)轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離地面不低于100米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上饒某購(gòu)物中心在開(kāi)業(yè)之后,為了解消費(fèi)者購(gòu)物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).
(1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再?gòu)闹腥芜x2張,求這2張小票均來(lái)自元區(qū)間的概率;
(2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷方案:
方案一:全場(chǎng)商品打8.5折;
方案二:全場(chǎng)購(gòu)物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說(shuō)明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com