【題目】如圖,在棱長均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
【答案】ABD
【解析】
選項(xiàng)A,利用線面平行的判定定理即可證明;選項(xiàng)B,先利用線面平行的判定定理證明CD∥平面OMN,再利用面面平行的判定定理即可證明;選項(xiàng)C,平移直線,找到線面角,再計(jì)算;選項(xiàng)D,因?yàn)?/span>ON∥PD,所以只需證明PD⊥PB,利用勾股定理證明即可.
選項(xiàng)A,連接BD,顯然O為BD的中點(diǎn),又N為PB的中點(diǎn),所以∥ON,由線面平行的判定定理可得,∥平面;選項(xiàng)B, 由,分別為側(cè)棱,的中點(diǎn),得MN∥AB,又底面為正方形,所以MN∥CD,由線面平行的判定定理可得,CD∥平面OMN,又選項(xiàng)A得∥平面,由面面平行的判定定理可得,平面∥平面;選項(xiàng)C,因?yàn)?/span>MN∥CD,所以∠ PDC為直線與直線所成的角,又因?yàn)樗欣忾L都相等,所以∠ PDC=,故直線與直線所成角的大小為;選項(xiàng)D,因底面為正方形,所以,又所有棱長都相等,所以,故,又
∥ON,所以,故ABD均正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下說法:
①一年按365天計(jì)算,兩名學(xué)生的生日相同的概率是;②買彩票中獎(jiǎng)的概率為0.001,那么買1 000張彩票就一定能中獎(jiǎng);③乒乓球賽前,決定誰先發(fā)球,抽簽方法是從1~10共10個(gè)數(shù)字中各抽取1個(gè),再比較大小,這種抽簽方法是公平的;④昨天沒有下雨,則說明“昨天氣象局的天氣預(yù)報(bào)降水概率是90%”是錯(cuò)誤的.
根據(jù)我們所學(xué)的概率知識(shí),其中說法正確的序號(hào)是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個(gè)對(duì)稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a,.
當(dāng)時(shí),若在處取得極小值,求a的值;
當(dāng)時(shí).
若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;
若存在實(shí)數(shù),使得,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對(duì)稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象向右平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù), 為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在三個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線(為參數(shù))與曲線相交于兩點(diǎn).
(1)試寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線∶和圓∶,是直線上一點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為.
(1)若,求點(diǎn)坐標(biāo);
(2)若圓上存在點(diǎn),使得,求點(diǎn)的橫坐標(biāo)的取值范圍;
(3)設(shè)線段的中點(diǎn)為,與軸的交點(diǎn)為,求線段長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號(hào)為a,b的2個(gè)黑球和編號(hào)為c,d,e的3個(gè)紅球.
(1)若從中一次性(任意)摸出2個(gè)球,求恰有一個(gè)黑球和一個(gè)紅球的概率;
(2)若從中任取一個(gè)球給小朋友甲,然后再從中任取一個(gè)球給小朋友乙,求甲、乙兩位小朋友拿到的球中恰好有一個(gè)黑球的概率.
(3)若從中連續(xù)取兩次,每次取一球后放回,求取出的兩個(gè)球恰好有一個(gè)黑球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com