17.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,則a等于( 。
A.$\sqrt{6}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 由題意和正弦定理求出sinC,由內(nèi)角的范圍和條件求出C,由內(nèi)角和定理求出A,利用邊角關(guān)系求出a.

解答 解:∵c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,
∴由正弦定理得,$\frac{sinB}=\frac{c}{sinC}$,
則sinC=$\frac{c•sinB}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
∵0°<C<120°,∴C=30°,
∴A=180°-B-C=30°,
即A=C,a=c=$\sqrt{2}$,
故選B.

點(diǎn)評 本題考查正弦定理,以及內(nèi)角和定理,注意內(nèi)角和的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果一個(gè)幾何體的三視圖是如圖所示(單位:cm)則此幾何體的表面積是( 。
A.$(16+6\sqrt{2})c{{m}^{2}}^{\;}$B.22cm2C.$(12+6\sqrt{2})c{m}^{2}$D.$(18+2\sqrt{3})c{m}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)P是拋物線C1:y2=4x上的動點(diǎn),過P作圓(x-3)2+y2=2的兩條切線,則兩條切線的夾角的最大值為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知 f(x)、g(x)都是定義在 R 上的函數(shù),g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax g(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,則關(guān)于x的方程abx2+$\sqrt{2}$x+2=0(b∈(0,1))有兩個(gè)不同實(shí)根的概率為( 。
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|-2<x<1},B={x|0<x<2},則集合A∪B=(  )
A.{x|-1<x<1}B.{x|-2<x<2}C.{x|0<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),且AB=2,
( 1 )求證:BD1∥面AEC;
(2)求三棱錐C-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.冪函數(shù)f(x)=xm是偶函數(shù),在x∈(0,+∞)為增函數(shù),則m的值為(2)(3)
(1)-1;(2)2;(3)4;(4)-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,角A、B、C所對的邊長分別為a、b、c,$C=\frac{π}{3}$,a+b=1,則△ABC周長的最小值是( 。
A.$\frac{1}{2}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}的前項(xiàng)和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4,設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,則數(shù)列{bn}的前項(xiàng)和Tn為( 。
A.$\frac{3n}{10(10-3n)}$B.$\frac{n}{10(10-3n)}$C.$\frac{n}{10-3n}$D.$\frac{n}{10(13-3n)}$

查看答案和解析>>

同步練習(xí)冊答案