解關(guān)于x的不等式ax+5<a4x-1(a>0,且a≠1).
【答案】分析:根據(jù)指數(shù)函數(shù)的單調(diào)性,分0<a<1和a>1兩種情況討論,將原不等式轉(zhuǎn)化為關(guān)于x的一元一次不等式,可得答案.
解答:解:當(dāng)0<a<1時(shí),函數(shù)y=ax在R上為減函數(shù)                                    …(1分)
由ax+5<a4x-1,得x+5>4x-1,解得:x<2                                            …(4分)
當(dāng)a>1時(shí),函數(shù)y=ax在R上為增函數(shù)                                          …(5分)
由ax+5<a4x-1,得x+5<4x-1,解得:x>2                                             …(8分)
綜上,當(dāng)0<a<1時(shí),原不等式的解集為{x|x<2};當(dāng)a>1時(shí),原不等式的解集為{x|x>2};…(10分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是指數(shù)不等式的解法,其中根據(jù)指數(shù)函數(shù)的單調(diào)性,將不等式轉(zhuǎn)化為整式不等式是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax-
3
x
+1
1
a
(其中a>0且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax+5<a4x-1(a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知loga(a2+1)<0
(1)比較loga(a2+1)與loga2a的大。
(2)解關(guān)于x的不等式ax+1-
3
x
1
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式|ax-1|>a+1(a>-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax-
2x
≥2-a

查看答案和解析>>

同步練習(xí)冊答案