已知圓C方程為:x2+y2=4.
(Ⅰ)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線l的方程;
(Ⅱ)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.
【答案】分析:(I)分類討論:①當(dāng)直線l垂直于x軸時(shí);②若直線l不垂直于x軸.對(duì)于②,設(shè)其方程為y-2=k(x-1),結(jié)合直線與圓的位置關(guān)系利用弦長(zhǎng)公式即可求得k值,從而解決問(wèn)題.
(II)設(shè)點(diǎn)M的坐標(biāo)為(x,y)(y≠0),Q點(diǎn)坐標(biāo)為(x,y),利用向量的坐標(biāo)運(yùn)算表示出M的坐標(biāo),再利用M點(diǎn)在圓上其坐標(biāo)適合方程即可求得動(dòng)點(diǎn)Q的軌跡方程,最后利用方程的形式進(jìn)行判斷是什么曲線即可.
解答:解(Ⅰ)①當(dāng)直線l垂直于x軸時(shí),
則此時(shí)直線方程為x=1,l與圓的兩個(gè)交點(diǎn)坐標(biāo)為,
其距離為滿足題意(1分)
②若直線l不垂直于x軸,設(shè)其方程為y-2=k(x-1),即kx-y-k+2=0
設(shè)圓心到此直線的距離為d,則,得d=1(3分)
,
故所求直線方程為3x-4y+5=0
綜上所述,所求直線為3x-4y+5=0或x=1(7分)

(Ⅱ)設(shè)點(diǎn)M的坐標(biāo)為(x,y)(y≠0),Q點(diǎn)坐標(biāo)為(x,y)
則N點(diǎn)坐標(biāo)是(0,y)(9分)
,
∴(x,y)=(x,2y)即x=x,(11分)
又∵x2+y2=4,∴
∴Q點(diǎn)的軌跡方程是,(13分)
軌跡是一個(gè)焦點(diǎn)在y軸上的橢圓,除去長(zhǎng)軸端點(diǎn).(14分)
點(diǎn)評(píng):本小題主要考查直線的一般式方程、直線和圓的方程的應(yīng)用、軌跡方程的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C方程為:x2+y2=4.
(Ⅰ)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=2
3
,求直線l的方程;
(Ⅱ)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量
OQ
=
OM
+
ON
,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省鶴崗一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓C方程為:x2+y2=4.
(Ⅰ)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線l的方程;
(Ⅱ)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省廣州市執(zhí)信中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知圓C方程為:x2+y2=4.
(Ⅰ)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線l的方程;
(Ⅱ)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省南昌市蓮塘一中高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C方程為:x2+y2=4.
(Ⅰ)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線l的方程;
(Ⅱ)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考數(shù)學(xué)復(fù)習(xí):8.9 曲線與方程(解析版) 題型:解答題

已知圓C方程為:x2+y2=4.
(Ⅰ)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若,求直線l的方程;
(Ⅱ)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案