16.將A,B,C,D這4名同學(xué)從左至右隨機(jī)地排成一排,則“A與B相鄰且A與C之間恰好有1名同學(xué)”的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

分析 先求出基本事件總數(shù)n=${A}_{4}^{4}$,再利用列舉法求出“A與B相鄰且A與C之間恰好有1名同學(xué)”包含的基本事件個(gè)數(shù),由此能求出“A與B相鄰且A與C之間恰好有1名同學(xué)”的概率.

解答 解:∵將A,B,C,D這4名同學(xué)從左至右隨機(jī)地排成一排,
基本事件總數(shù)n=${A}_{4}^{4}$=4×3×2×1=24,
“A與B相鄰且A與C之間恰好有1名同學(xué)”包含的基本事件有:
ABCD,CBAD,CDAB,DABC,DCBA,BADC,共6個(gè),
∴“A與B相鄰且A與C之間恰好有1名同學(xué)”的概率p=$\frac{6}{24}=\frac{1}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若x0是方程lnx+x-3=0的實(shí)數(shù)解,則x0屬于區(qū)間( 。
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若bsinB-asinC=0
(1)求證:a,b,c成等比數(shù)列;
(2)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義在[0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,2)時(shí),$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點(diǎn)從小到大依次為x1,x2,x3,…xn,…,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n=6×(2n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x|2x2+x-3=0},集合B={i|i2≥4}},∁RC={-1,1,$\frac{3}{2}$},則A∩BU∁RC=( 。
A.{1,-1,$\frac{3}{2}$}B.{-2,1,-$\frac{3}{2}$,-1}C.{1}D.{2,1,-1,$\frac{3}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-y的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.以直角坐標(biāo)系xOy中,直線l:y=x,圓C:$\left\{\begin{array}{l}{x=-1+cosφ}\\{y=-2+sinφ}\end{array}\right.$(φ為參數(shù)),以坐標(biāo)原點(diǎn)為為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l與圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C的交點(diǎn)為M,N,求△CMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.函數(shù)f(x)=ax+xlnx在x=1處取得極值.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若y=f(x)-m-1在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.化簡(jiǎn)$\sqrt{1-2sin1cos1}$的結(jié)果為( 。
A.sin1-cos1B.cos1-sin1C.sin1+cos1D.-sin1-cos1

查看答案和解析>>

同步練習(xí)冊(cè)答案