設(shè)F1是橢圓+y2=1的左焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,則的取值范圍是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

設(shè)橢圓+y2=1的兩個(gè)焦點(diǎn)是F1(-c,0)與F2(c,0),(c>0),且橢圓上存在一點(diǎn)P,使得直線PF1與PF2垂直.

(1)求實(shí)數(shù)m的取值范圍;

(2)設(shè)l是相應(yīng)于焦點(diǎn)F2的準(zhǔn)線,直線PF2l相交于點(diǎn)Q,若||=2-,求直線PF2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省長(zhǎng)春市十一高中2009-2010學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:044

設(shè)F1、F2分別是橢圓y2=1的左右焦點(diǎn).

(1)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最值;

(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(O為坐標(biāo)原點(diǎn)),求直線l的斜率k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都市龍泉中學(xué)2010屆高三第五次調(diào)研考試數(shù)學(xué)文科試題 題型:044

設(shè)F1、F2分別是橢圓+y2=1的左、右焦點(diǎn).

(Ⅰ)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求·的最大值和最小值;

(Ⅱ)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過(guò)點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得.

(1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線l的方程.

【解析】(1)中利用點(diǎn)F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問(wèn)知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案