【題目】根據(jù)以往的經(jīng)驗,某建筑工程施工期間的降水量(單位:)對工期的影響如下表:
降水量 | ||||
工期延誤天數(shù) | 0 | 1 | 3 | 6 |
根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.
(1)求這天的平均降水量;
(2)根據(jù)降水量的折線圖,分別估計該工程施工延誤天數(shù)的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】絕對值|x﹣1|的幾何意義是數(shù)軸上的點x與點1之間的距離,那么對于實數(shù)a,b,的幾何意義即為點x與點a、點b的距離之和.
(1)直接寫出與的最小值,并寫出取到最小值時x滿足的條件;
(2)設(shè)a1≤a2≤…≤an是給定的n個實數(shù),記S=.試猜想:若n為奇數(shù),則當(dāng)x∈ 時S取到最小值;若n為偶數(shù),則當(dāng)x∈ 時,S取到最小值;(直接寫出結(jié)果即可)
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,,C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:
(1)若,則存在唯一零點
(2)若,則
(3)若有兩個極值點,則
其中正確結(jié)論的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在九年級上學(xué)期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機抽取了100名學(xué)生進行測試,得到頻率分布直方圖(如圖),且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請估計學(xué)生的跳繩個數(shù)的眾數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個數(shù)在,兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求2人得分之和不大于34分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗,某建筑工程施工期間的降水量(單位:)對工期的影響如下表:
降水量 | ||||
工期延誤天數(shù) | 0 | 1 | 3 | 6 |
根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.
(1)根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;
(2)以(1)中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學(xué)期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,是的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.
圖1 圖2
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上的零點個數(shù);
(2)當(dāng)時,若存在,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且x>0時,f(x)=x2-4x+3.
求:(1)f(x)的解析式.
(2)已知t>0,求函數(shù)f(x)在區(qū)間[t,t+1]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com