7.如圖所示為函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分圖象,其中A,B兩點(diǎn)之間的距離為5,那么$\frac{f(-1)}{2}$=( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

分析 根據(jù)AB的距離計(jì)算周期,得出ω,根據(jù)f(0)=1計(jì)算φ,得出f(x)的解析式,再代入計(jì)算.

解答 解:由圖象可知AB兩點(diǎn)間的垂直距離為4,
∴AB兩點(diǎn)間的水平距離為3,
f(x)的周期T=2×3=6,
∴$\frac{2π}{ω}$=6,
∴ω=$\frac{π}{3}$.
∵f(0)=2sinφ=1,
∴sinφ=$\frac{1}{2}$,
∵0≤φ≤π,
∴φ=$\frac{π}{6}$或φ=$\frac{5π}{6}$.
∵f(x)在AB之間的函數(shù)圖象是減函數(shù),
∴f(x)=2sin($\frac{π}{3}x$+$\frac{5π}{6}$),
∴$\frac{f(-1)}{2}$=sin(-$\frac{π}{3}$+$\frac{5π}{6}$)=sin$\frac{π}{2}$=1.
故選:C.

點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx,$g(x)=-x-\frac{a}{x}(a≠0)$,設(shè)F(x)=f(x)+g(x),
(1)當(dāng)a=2時(shí),求函數(shù)F(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=F(x)(x∈(0,1])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率記為k,且k≤1恒成立,求實(shí)數(shù)a的最大值;
(3)是否存在實(shí)數(shù)m,使得函數(shù)$y=g(\frac{2a}{{{x^2}+1}})+\frac{2a}{{{x^2}+1}}+m-1$的圖象與函數(shù)$y=-f(x)-2x-\frac{2}{x}$的圖象恰有三個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平面四邊形ABCD中,AB⊥AD,AB=1,$AC=\sqrt{7}$,$∠ABC=\frac{2π}{3}$,$∠ACD=\frac{π}{3}$.
(Ⅰ)求sin∠BAC;
(Ⅱ)求DC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=1+2sin({2x-\frac{π}{3}})$.
(Ⅰ)用五點(diǎn)法作圖作出f(x)在x∈[0,π]的圖象;
(2)求f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$的最大值和最小值;
(3)若不等式|f(x)-m|<2在$x∈[{\frac{π}{4},\frac{π}{2}}]$上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.復(fù)數(shù)z滿足z(2-i)=1+7i,則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.-1-3iB.-1+3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知a,b是直線,α、β、γ是不同的平面,有以下四個(gè)命題:
①a⊥α,b⊥β,a⊥b,則α⊥β;
②α⊥γ,β⊥γ,則α∥β;
③b⊥α,β⊥α,則b∥β;
④α∥β,α∩γ=a,β∩γ=b,則a∥b,
其中正確的命題序號(hào)是( 。
A.①④B.①③C.①②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2cos(2x+$\frac{π}{3}$)-2cos2x+1.
(I)求函數(shù)f(x)圖象的對(duì)稱中心;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若△ABC為銳角三角形且f(A)=0,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(1,-2),與$\overrightarrow{a}$垂直的單位向量是($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=2,b=3,cosC=$\frac{1}{3}$,則sinA=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案