分析 (1)根據(jù)兩角和的余弦定理和輔助角公式化簡(jiǎn)函數(shù)解析式,由正弦函數(shù)的對(duì)稱(chēng)中心求得函數(shù)圖象的對(duì)稱(chēng)中心.
(2)根據(jù)正弦定理,化簡(jiǎn)$\frac{c}$,再構(gòu)造函數(shù),利用函數(shù)的單調(diào)性即可求出.
解答 解:(1)$f(x)=2cos(2x+\frac{π}{3})-2cos2x+1$,
=-cos2x-$\sqrt{3}$sin2x+1,
=-2sin(2x+$\frac{π}{6}$)+1,
對(duì)稱(chēng)中心橫坐標(biāo)滿(mǎn)足:2x+$\frac{π}{6}$=kπ,k∈Z,
∴x=-$\frac{π}{12}$+$\frac{k}{2}$π,
∴對(duì)稱(chēng)中心為(-$\frac{π}{12}$+$\frac{k}{2}$π,1)
(2)∵f(A)=0,
∴-2sin(2A+$\frac{π}{6}$)+1=0,
∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,
A=$\frac{π}{3}$,
∴B+C=$\frac{2π}{3}$
∵△ABC為銳角三角形
∴$\frac{c}$=$\frac{sinB}{sinC}$=$\frac{\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC}{sinC}$=$\frac{\sqrt{3}}{2}$$\frac{1}{tanC}$+$\frac{1}{2}$,
∵0<B<$\frac{π}{2}$,0<C<$\frac{π}{2}$
∴$\frac{π}{6}$<C<$\frac{π}{2}$
∴tanC>$\sqrt{3}$
∴$\frac{1}{tanC}$<$\frac{1}{\sqrt{3}}$
∴$\frac{1}{2}$<$\frac{c}$<2
∴$\frac{c}$的范圍是($\frac{1}{2}$,2)
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn),兩角和的正弦與余弦公式,正切函數(shù)的應(yīng)用,正弦定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2-\sqrt{3}$ | B. | $-2-\sqrt{3}$ | C. | $-2+\sqrt{3}$ | D. | $2+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{11}$ | B. | $\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$ | C. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{10}$ | D. | $\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {α|α=k?360°+527°,k∈Z} | B. | { α|α=k?360°+157°,k∈Z } | ||
C. | {α|α=k?360°+193°,k∈Z } | D. | { α|α=k?360°-193°,k∈Z } |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com