【題目】如圖,橢圓E:+=1(a>b>0)的離心率是,過(guò)點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A,B兩點(diǎn),當(dāng)直線l平行于x軸時(shí),直線l被橢圓E截得的線段長(zhǎng)為2.
(1)求橢圓E的方程;
(2)在平面直角坐標(biāo)系xOy中,是否存在與點(diǎn)P不同的定點(diǎn)Q,使得=恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)
【解析】
(1)根據(jù)題意橢圓過(guò)點(diǎn).,在由離心率是,列方程組求解.
(2)根據(jù)特殊直線位置,先確定點(diǎn)Q在y軸上,由斜率不存在確定點(diǎn)的坐標(biāo),然后再證明斜率存在時(shí)的情況也成立。.
(1)因?yàn)檫^(guò)點(diǎn)P(0,1)的動(dòng)直線l與橢圓相交于A,B兩點(diǎn),當(dāng)直線l平行于x軸時(shí),直線l被橢圓E截得的線段長(zhǎng)為2,
所以橢圓過(guò)點(diǎn).,
所以,
解得,
所以橢圓得方程為:.
(2)當(dāng)l平行于x軸,設(shè)直線與橢圓相交于C,D,兩點(diǎn),如果存在Q點(diǎn)滿足條件,
則有=,即,
所以Q點(diǎn)在y軸上,可設(shè)Q的坐標(biāo)為,
當(dāng) l垂直于x軸時(shí),設(shè)直線與橢圓相交于M,N,兩點(diǎn),如果存在Q點(diǎn)滿足條件,
則有=,,
解得或
所以若存在不同于點(diǎn)P的頂點(diǎn)Q滿足條件,則Q點(diǎn)的坐標(biāo)為
當(dāng)l不平行于x軸,當(dāng) l不垂直于x軸時(shí),
設(shè)直線方程為,
與橢圓方程聯(lián)立,消去y得,
,
又因?yàn)辄c(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為,
又,
且,
所以,則三點(diǎn)共線,
所以=.
故存在存在與點(diǎn)P不同的定點(diǎn)Q,使得=恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)直線l與曲線C交于AB兩點(diǎn),P(1,3),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓C:1(a>b>0)的離心率為,右準(zhǔn)線方程為x=4,A,B分別是橢圓C的左,右頂點(diǎn),過(guò)右焦點(diǎn)F且斜率為k(k>0)的直線l與橢圓C相交于M,N兩點(diǎn)(其中,M在x軸上方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)線段MN的中點(diǎn)為D,若直線OD的斜率為,求k的值;
(3)記△AFM,△BFN的面積分別為S1,S2,若,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開(kāi)設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營(yíng)業(yè)額(萬(wàn)元)的數(shù)據(jù)如下:
加盟店個(gè)數(shù)(個(gè)) | 1 | 2 | 3 | 4 | 5 |
單店日平均營(yíng)業(yè)額(萬(wàn)元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營(yíng)業(yè)額(萬(wàn)元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;
(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營(yíng)業(yè)額預(yù)計(jì)值總和不低于35萬(wàn)元,求一個(gè)地區(qū)開(kāi)設(shè)加盟店個(gè)數(shù)的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點(diǎn)在直線上.
(1)若直線與橢圓交于兩點(diǎn),求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在xOy中,曲線的參數(shù)方程為(t為參數(shù)).在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線:,曲線:,.
(1)把的參數(shù)方程化為極坐標(biāo)方程;
(2)設(shè)分別交,于點(diǎn)P,Q,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱柱的底面是邊長(zhǎng)為的菱形,且,平面,,于點(diǎn),點(diǎn)是的中點(diǎn).
(1)求證:平面;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足.
(1)求角;
(2)若,___________________(從下列問(wèn)題中任選一個(gè)作答,若選擇多個(gè)條件分別解答,則按選擇的第一個(gè)解答計(jì)分).
①的面積為,求的周長(zhǎng);
②的周長(zhǎng)為21,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銀川市房管局為了了解該市市民2018年1月至2019年1月期間購(gòu)買(mǎi)二手房情況,首先隨機(jī)抽樣其中200名購(gòu)房者,并對(duì)其購(gòu)房面積m(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖所示的頻率分布直方圖.
(Ⅰ)試估計(jì)該市市民的平均購(gòu)房面積:
(Ⅱ)現(xiàn)采用分層抽樣的方法從購(gòu)房面積位于的40位市民中隨機(jī)取4人,再?gòu)倪@4人中隨機(jī)抽取2人,求這2人的購(gòu)房面積恰好有一人在的概率,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com