1.等差數(shù)列{an}中,a2+a3+a4=3,Sn為等差數(shù)列{an}的前n項(xiàng)和,則S5=( 。
A.3B.4C.5D.6

分析 由等差數(shù)列通項(xiàng)公式得a2+a3+a4=3a3=3,從而a3=1,再由等差列前n項(xiàng)和公式得S5=$\frac{5}{2}({a}_{1}+{a}_{5})$=5a3,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}中,a2+a3+a4=3,
Sn為等差數(shù)列{an}的前n項(xiàng)和,
∴a2+a3+a4=3a3=3,
解得a3=1,
∴S5=$\frac{5}{2}({a}_{1}+{a}_{5})$=5a3=5.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的前5項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.8B.13C.21D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓M與y軸相切,圓心在直線y=$\frac{1}{2}$x上,并且在x軸上截得的弦長為2$\sqrt{3}$.則圓M的標(biāo)準(zhǔn)方程為(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系xOy中,焦點(diǎn)在x軸上的橢圓C:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{^{2}}$=1經(jīng)過點(diǎn)(b,2e),其中e為橢圓C的離心率.過點(diǎn)T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(diǎn)(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)O且平行于l的直線交橢圓C于點(diǎn)M,N,求 $\frac{AT•BT}{MN2}$ 的值;
(3)記直線l與y軸的交點(diǎn)為P.若$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,程序輸出的結(jié)果s=1320,則判斷框中應(yīng)填(  )
A.i≥10?B.i<10?C.i≥11?D.i<11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AA1=AB=2,E,F(xiàn)分別是CC1,BC的中點(diǎn).
(1)求證:平面AB1F⊥平面AEF;
(2)求點(diǎn)C到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)={(\frac{1}{3})^x}-{log_2}$x,正實(shí)數(shù)a,b,c是公差為負(fù)數(shù)的等差數(shù)列,且滿足f(a)•f(b)•f(c)<0,若實(shí)數(shù)d是方程f(x)=0的一個(gè)解,那么下列四個(gè)判斷:①d<a;②d<b;③d>c;④d<c中一定成立的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.中國詩詞大會的播出引發(fā)了全民的讀書熱,某小學(xué)語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如圖所示.若規(guī)定得分不小于85分的學(xué)生得到“詩詞達(dá)人”的稱號,小于85分且不小于70分的學(xué)生得到“詩詞能手”的稱號,其他學(xué)生得到“詩詞愛好者”的稱號,根據(jù)該次比賽的成就按照稱號的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號的人數(shù)為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個(gè)袋中裝有3個(gè)紅球和1個(gè)白球,現(xiàn)從袋中取出1球,然后放回袋中再取出一球,則兩次取出的球顏色相同的概率是$\frac{5}{8}$.

查看答案和解析>>

同步練習(xí)冊答案