分析 (1)連結(jié)AF,由已知條件推導(dǎo)出面ABC⊥面BB1C1C,從而AF⊥B1F,由勾股定理得B1F⊥EF.由此能證明平面AB1F⊥平面AEF.
(2)利用等面積方法,即可求出點(diǎn)C到平面AEF的距離.
解答 (1)證明:連結(jié)AF,∵F是等腰直角三角形△ABC斜邊BC的中點(diǎn),
∴AF⊥BC.
又∵三棱柱ABC-A1B1C1為直三棱柱,
∴面ABC⊥面BB1C1C,
∴AF⊥面BB1C1C,AF⊥B1F.…(2分)
設(shè)AB=AA1=1,則B1F=$\frac{\sqrt{6}}{2}$,EF=$\frac{\sqrt{3}}{2}$,B1E=$\frac{3}{2}$.
∴B1F2+EF2=B1E2,∴B1F⊥EF.
又AF∩EF=F,∴B1F⊥平面AEF.…(4分)
而B(niǎo)1F?面AB1F,故:平面AB1F⊥平面AEF.…(5分)
(2)解:設(shè)點(diǎn)C到平面AEF的距離為h,則由題意,AF⊥CF,AF⊥EF,
∴S△ACF=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,S△AEF=$\frac{1}{2}×\sqrt{2}×\sqrt{3}$=$\frac{\sqrt{6}}{2}$,
由等體積可得,$\frac{1}{3}×1×1=\frac{1}{3}×\frac{\sqrt{6}}{2}h$,∴h=$\frac{\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題考查平面與平面垂直的證明,考查點(diǎn)C到平面AEF的距離的求法,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,3,4,5} | C. | {2,3,4} | D. | {1,2,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a1>a2 | B. | a2>a1 | ||
C. | a1=a2 | D. | a1,a2的大小與m的值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 | $\frac{1}{2}$ | $\frac{1}{8}$ | $\frac{3}{8}$ |
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 | p | $\frac{1}{3}$ | q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com