8.已知全集U={0,1,2,3,4},集合M={1,2,3},N={0,3,4},則(∁UM)∩N( 。
A.{0,4}B.{3,4}C.{1,2}D.

分析 利用集合的運(yùn)算性質(zhì)即可得出.

解答 解:∁UM={0,4},
∴(∁UM)∩N={0,4}.
故選:A.

點(diǎn)評 本題考查了不等式的解法、集合的運(yùn)算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知非零向量$\overrightarrow a$=(cosα,cosα),向量$\overrightarrow b$=(sinα,cosθ-2sinα),向量$\overrightarrow c$=(1,2).
(I)若$\overrightarrow a$∥$\overrightarrow b$,求tanα的值;
(II)若|${\overrightarrow b}$|=|${\overrightarrow c}$|,0<α<π,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.閱讀下面程序,當(dāng)輸入x的值為3時,輸出y的值為1.5.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若隨機(jī)變量X~N(u,σ2)(σ>0),則有如下結(jié)論( 。
P(u-σ<X≤u+σ)=0.6826,
P(u-2σ<X≤u+2σ)=0.9544
P(u-3σ<X≤u+3σ)=0.9974,
一班有60名同學(xué),一次數(shù)學(xué)考試的成績服從正態(tài)分布,平均分110,方差為100,理論上說在120分到130分之間的人數(shù)約為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為$ρcos({θ-\frac{π}{3}})=1$,P為C1與x軸的交點(diǎn),已知曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=-2+sinθ\end{array}\right.$(θ為參數(shù)),M,N是曲線C2上的兩點(diǎn)且對應(yīng)的參數(shù)分別為θ=α,$θ=α+\frac{π}{2}$,其中α∈R.
(Ⅰ)寫出曲線C1的直角坐標(biāo)方程;
(Ⅱ)求|PM|2+|PN|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長度,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2.
(1)分別寫出曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)已知M,N分別是曲線C1的上、下頂點(diǎn),點(diǎn)P為曲線C2上任意一點(diǎn),求|PM|+|PN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.把函數(shù)y=$\frac{1}{2}$sin2x的圖象經(jīng)過________變化,可以得到函數(shù)y=$\frac{1}{4}$sinx的圖象.( 。
A.橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,縱坐標(biāo)伸長為原來的2倍
B.橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)伸長為原來的2倍
C.橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,縱坐標(biāo)縮短為原來的$\frac{1}{2}$倍
D.橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)tan(α-$\frac{π}{4}$)=$\frac{1}{4}$,則tan(α+$\frac{π}{4}$)=( 。
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知定義在(0,+∞)的函數(shù)f(x)=|4x(1-x)|,若關(guān)于x的方程f2(x)+(t-3)f(x)+t-2=0有且只有3個不同的實(shí)數(shù)根,則實(shí)數(shù)t的取值集合是{2,$5-2\sqrt{2}$}.

查看答案和解析>>

同步練習(xí)冊答案