已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式:
(Ⅱ)若數(shù)列{an}和等比數(shù)列{bn}滿足等式:b1=a1+1,b3=a3+3(n為正整數(shù))求數(shù)列{bn}的前n項(xiàng)和Sn
分析:(I)利用等差數(shù)列的通項(xiàng)公式即可得出;
(II)利用等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式即可得出.
解答:解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,則依題設(shè)d>0.
由于滿足a3a6=55,a2+a7=16.可得
(a1+2d)(a1+5d)=55
2a1+7d=16

解得
a1=1
d=2

∴an=a1+2(n-1)=2n-1.
(Ⅱ)由(I)可得:b1=a1+1=2,
b3=a3+3=5+3=8,
設(shè)等比數(shù)列{bn}的公比為q,則a3=a1q2,得8=2q2,解得q=±2.
當(dāng)q=2時(shí),Sn=
b1(qn-1)
q-1
=
2(2n-1)
2-1
=2n+1-2.
當(dāng)q=-2時(shí),Sn=
b1(qn-1)
q-1
=
2[(-2)n-1]
-2-1
=-
2
3
[(-2)n-1]
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式、等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)如果一個(gè)數(shù)列{an}對(duì)任意正整數(shù)n滿足an+an+1=h(其中h為常數(shù)),則稱數(shù)列{an}為等和數(shù)列,h是公和,Sn是其前n項(xiàng)和.已知等和數(shù)列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義等積數(shù)列:在一個(gè)數(shù)列中,若每一項(xiàng)與它的后一項(xiàng)的積是同一常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)數(shù)叫做公積.已知等積數(shù)列{an}中,a1=2,公積為5,當(dāng)n為奇數(shù)時(shí),這個(gè)數(shù)列的前n項(xiàng)和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•溫州一模)定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)和它的后一項(xiàng)的積都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列.這個(gè)常數(shù)叫做等積數(shù)列的公積.已知{an}是等積數(shù)列,且a1=1,公積為2,則這個(gè)數(shù)列的前n項(xiàng)的和Sn=
3n
2
,n是正偶數(shù)
3n-1
2
,n是正奇數(shù)
3n
2
,n是正偶數(shù)
3n-1
2
,n是正奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:溫州一模 題型:填空題

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)和它的后一項(xiàng)的積都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列.這個(gè)常數(shù)叫做等積數(shù)列的公積.已知{an}是等積數(shù)列,且a1=1,公積為2,則這個(gè)數(shù)列的前n項(xiàng)的和Sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005年浙江省溫州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)和它的后一項(xiàng)的積都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列.這個(gè)常數(shù)叫做等積數(shù)列的公積.已知{an}是等積數(shù)列,且a1=1,公積為2,則這個(gè)數(shù)列的前n項(xiàng)的和Sn=   

查看答案和解析>>

同步練習(xí)冊(cè)答案