【題目】在平面直角坐標(biāo)系中,拋物線C)的焦點(diǎn)為

1)動(dòng)直線lF點(diǎn)且與拋物線C交于MN兩點(diǎn),點(diǎn)My軸的左側(cè),過點(diǎn)M作拋物線C準(zhǔn)線的垂線,垂足為M1,點(diǎn)E上,且滿足連接并延長交y軸于點(diǎn)D,的面積為,求拋物線C的方程及D點(diǎn)的縱坐標(biāo);

2)點(diǎn)H為拋物線C準(zhǔn)線上任一點(diǎn),過H作拋物線C的兩條切線,,切點(diǎn)為A,B,證明直線過定點(diǎn),并求面積的最小值.

【答案】1;(0,4)(2)證明見解析,面積最小值為4

【解析】

(1)由焦點(diǎn)坐標(biāo),可得拋物線的方程,設(shè),由向量共線定理可得,求得M的坐標(biāo),代入拋物線方程可得,即可求解;

2))設(shè)點(diǎn),,根據(jù)導(dǎo)數(shù)的幾何意義,求得拋物線在A, B處的切線的方程,由兩點(diǎn)確定一直線可得AB的方程,進(jìn)而得到恒過定點(diǎn)F,再討論t=0, ,寫出即可求最值.

1)因?yàn)?/span>,所以拋物線C,

設(shè),

因?yàn)?/span>,,

所以,,

又因?yàn)?/span>,推出

M在拋物線C上,,

解得,故 D0,4

2)設(shè)點(diǎn),.

C,

,得

所以拋物線C在點(diǎn)處的切線的方程為,

,

因?yàn)?/span>,,

因?yàn)?/span>在切線上,

所以

同理②;

綜合①②得,點(diǎn),的坐標(biāo)滿足方程,

即直線恒過拋物線焦點(diǎn).

當(dāng)時(shí),此時(shí),可知,

當(dāng)時(shí),此時(shí)直線的斜率為,得,

于是,而,

把直線代入C中,消去x,

當(dāng)時(shí),最小,且最小值為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,.,為鄰邊作平行四邊形,連接.

1)求證:平面;

2)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是雙曲線的左、右焦點(diǎn),點(diǎn)P上異于頂點(diǎn)的點(diǎn),直線l分別與以,為直徑的圓相切于A,B兩點(diǎn),若向量,的夾角為,則=___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)設(shè)、為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線,交曲線分別于點(diǎn),.面積的最小值,并求此時(shí)四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知扇環(huán)如圖所示,是扇環(huán)邊界上一動(dòng)點(diǎn),且滿足,則的取值范圍為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.

1)求曲線的方程

2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜率為的直線交拋物線兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn)

1)若點(diǎn)的橫坐標(biāo)等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,且點(diǎn)F滿足,由橢圓C的四個(gè)頂點(diǎn)圍成的四邊形面積為.過點(diǎn)的直線TA,TB與此橢圓分別交于點(diǎn),其中,,

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)當(dāng)T在直線時(shí),直線MN是否過x軸上的一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓錐的頂點(diǎn)為,底面圓心為,半徑為2,母線長為

1)求該圓錐的體積;

2)已知為圓錐底面的直徑,為底面圓周上一點(diǎn),且,為線段的中點(diǎn),求異面直線所成的角的大小.

查看答案和解析>>

同步練習(xí)冊答案