在四棱錐中,,是正三角形,的交點(diǎn)恰好是中點(diǎn),又,,點(diǎn)在線段上,且

(1)求證:;
(2)求證:;
(1)先證,再證,進(jìn)而用線面垂直的判定定理即可證明;
(2)證明,然后利用線面平行的判定定理即可證明.

試題分析:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014613355544.png" style="vertical-align:middle;" />是正三角形, ,
,即 
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014613323714.png" style="vertical-align:middle;" />,所以


(2)在正中,
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014613760745.png" style="vertical-align:middle;" />, ,所以 
,所以,所以 
,

點(diǎn)評(píng):要證明線面垂直和線面平行,就要緊扣相應(yīng)的判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來(lái),缺一不可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如左圖,四邊形中,的中點(diǎn),,,,將左圖沿直線折起,使得二面角,如右圖.
(1)證明:平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方體的棱長(zhǎng)為1,的中點(diǎn),為線段上的動(dòng)點(diǎn),過(guò)點(diǎn)的平面截該正方體所得的截面記為,則下列命題正確的是         (寫(xiě)出所有正確命題的編號(hào)).

①當(dāng)時(shí),為四邊形
②當(dāng)時(shí),為等腰梯形
③當(dāng)時(shí),的交點(diǎn)滿(mǎn)足
④當(dāng)時(shí),為六邊形
⑤當(dāng)時(shí),的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知ABCD是矩形,邊長(zhǎng)AB=3,BC=4,正方形ACEF邊長(zhǎng)為5,平面ACEF⊥平面ABCD,則多面體ABCDEF的外接球的表面積 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

關(guān)于直線與平面,有以下四個(gè)命題:
①若,則;   ②若,則;
③若,則;  ④若,則;
其中真命題的序號(hào)是(      )
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

關(guān)于直線和平面,有如下四個(gè)命題:
(1)若,則;
(2)若,,則;
(3)若,則;
(4)若,則。其中真命題的個(gè)數(shù)是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在多面體中,四邊形是正方形,,,二面角是直二面角

(1)求證:平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED為正方形,且所在平面垂直于平面ABC.

(Ⅰ)證明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖甲,設(shè)正方形的邊長(zhǎng)為,點(diǎn)分別在上,并且滿(mǎn)足
,如圖乙,將直角梯形沿折到的位置,使點(diǎn)
平面上的射影恰好在上.

(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案