精英家教網 > 高中數學 > 題目詳情

【題目】按照我國《機動車交通事故責任強制保險條例》規(guī)定,交強險是車主必須為機動車購買的險種,若普通7座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是保費浮動機制,保費與上一、二、三個年度車輛發(fā)生道路交通事故的情況相關聯,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如表:

某機構為了研究某一品牌普通7座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時的費用,求的分布列;

(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.

①若該銷售商購進三輛車(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;

②假設購進一輛事故車虧損4000元,一輛非事故車盈利8000元.若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.

【答案】(1)見解析;(2)50萬元

【解析】分析:(1)根據題設中的費率浮動表和80輛車的續(xù)保情況表可得的分布列.

(2)二手車是事故車的概率為,三輛車中事故車的數量是一個隨機變量,它服從二項分布,利用公式可計算至少有兩輛事故車的概率.每輛車虧損4000的概率為,盈利的概率為,故可計算每輛車盈利的數學期望進而求得購進輛所得利潤的期望值.

詳解:(1)由題意可知的可能取值為.

由統(tǒng)計數據可知:

,,

,.

所以的分布列為:

(2)①由統(tǒng)計數據可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為,三輛車中至少有2輛事故車的概率為

.

②設為該銷售商購進并銷售一輛二手車的利潤,的可能取值為,.所以的分布列為:

所以,

所以該銷售商一次購進100輛該品牌車齡已滿三年的二手車獲得利潤的期望為萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某廠生產某種產品的年固定成本為250萬元,每生產千件,需另投入成本,當年產量不足80千件時,(萬元);當年產量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.

1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數據,,的平均值為2,方差為1,則數據,,相對于原數據( )

A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,要測量山頂上的電視塔FG的高度,已知山的西面有一棟樓AC(該樓的高度低于山的高度).試設計在樓AC上測山頂電視塔高度的測量、計算方案.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

設函數.

(Ⅰ)求的最小值及取得最小值時的取值范圍;

(Ⅱ)若集合,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列四個命題:

①回歸直線過樣本點中心(,

②將一組數據中的每個數據都加上或減去同一個常數后,平均值不變

③將一組數據中的每個數據都加上或減去同一個常數后,方差不變

④在回歸方程4x+4中,變量x每增加一個單位時,y平均增加4個單位

其中錯誤命題的序號是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數;

(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;

(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用B的學生中隨機抽查1人,發(fā)現他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數有變化?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若方程有五個不同的實數根,則 的取值范圍是( )

A.(0,+∞)B.(0,1)C.(-∞,0)D.(0,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,為平行四邊形ABCD所在平面外一點,M,N分別為AB,PC的中點,平面PAD平面PBC=.

(1)求證:BC∥

(2)MN與平面PAD是否平行?試證明你的結論.

查看答案和解析>>

同步練習冊答案