如果圓柱軸截面的周長為定值4,則圓柱體積的最大值為_______________。

試題分析:解:設圓柱的底面半徑為r,高為h,則4r+2h=4,即2r+h=2,∴2r+h=r+r+h ,故可知圓柱體積的最大值為
點評:本題考查圓柱的體積,考查基本不等式的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若某多面體的三視圖(單位:cm)如圖所示,則此多面體的表面是                 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個長方體去掉一個小長方體,所得幾何體的正(主)視圖與側(cè)(左)視圖分別如下圖所示,則該幾何體的俯視圖為(   )

    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.

(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關系,并證明結(jié)論;
(3)若AB=2,求三棱錐B﹣CED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某幾何體的三視圖和直觀圖如圖所示.

(Ⅰ)求證:平面平面
(Ⅱ)若是線段上的一點,且滿足,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

有一個幾何體的三視圖如圖所示,則該幾何體的體積為
A.16 B.20C.24D.32

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓錐的底面半徑為1,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案