1.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}+1,x<1}\\{{x^2}+ax,x≥1}\end{array}}$,若f(f(0))=3a,則實數(shù)a等于( 。
A.4B.2C.$\frac{4}{5}$D.$\frac{1}{2}$

分析 由已知得f(0)=20+1=2,f(f(0))=f(2)=22+2a=3a,由此能求出實數(shù)a.

解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}+1,x<1}\\{{x^2}+ax,x≥1}\end{array}}$,f(f(0))=3a,
∴f(0)=20+1=2,
f(f(0))=f(2)=22+2a=3a,
解得a=4.
∴實數(shù)a等于4.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出一個如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值得個數(shù)是1個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sinA-sinC(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角C的大小;    
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點C作圓O的切線交BA的延長線于點F.
(Ⅰ)求證:AC•BC=AD•AE;    
(Ⅱ)若AF=2,CF=2$\sqrt{2}$,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在公差不為零的等差數(shù)列{an}中,已知a2=3,且a1、a3、a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,記bn=$\frac{9}{{2{S_{3n}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2$\sqrt{3}$cos(ωx+$\frac{π}{6}}$)的最小正周期是π,則f(${\frac{π}{3}}$)=-3或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+ax2-a2x+2.
(1)若a=-1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若a≠0 求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z滿足z(1-i)=2,其中i為虛數(shù)單位,則z的實部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,有一塊矩形空地ABCD,AB=2km,BC=4km,根據(jù)周邊環(huán)境及地形實際,當(dāng)?shù)卣?guī)劃在該空地內(nèi)建一個箏形商業(yè)區(qū)AEFG,箏形的頂點A,E,F(xiàn),G為商業(yè)區(qū)的四個入口,其中入口F在邊BC上(不包含頂點),入口E,G分別在邊AB,AD上,且滿足點A,F(xiàn)恰好關(guān)于直線EG對稱,矩形內(nèi)箏形外的區(qū)域均為綠化區(qū).
(1)請確定入口F的選址范圍;
(2)設(shè)商業(yè)區(qū)的面積為S1,綠化區(qū)的面積為S2,商業(yè)區(qū)的環(huán)境舒適度指數(shù)為$\frac{S_2}{S_1}$,則入口F如何選址可使得該商業(yè)區(qū)的環(huán)境舒適度指數(shù)最大?

查看答案和解析>>

同步練習(xí)冊答案