【題目】已知函數(shù).

1)求函數(shù)處的切線方程;

2)若不等式對任意的都成立,求實數(shù)m的取值范圍.

【答案】(1);(2.

【解析】

(1)先利用導(dǎo)數(shù)求切線的斜率,再求切線方程;

(2) 根據(jù)題意可得對任意的,都成立,

時,顯然成立;當時,設(shè), 問題即轉(zhuǎn)化為恒成立,只需要即可,因為 (當且僅當時取等號),即滿足即有恒成立,構(gòu)造,通過求導(dǎo)判斷函數(shù)的單調(diào)性求最小值,即可求得的取值范圍.

1)設(shè),則,

時,,,

∴函數(shù)處的切線方程為,即.

2)根據(jù)題意可得對任意的,都成立,

時,不等式即為,顯然成立;

時,設(shè),則不等式恒成立,

即為不等式恒成立,

(當且僅當時取等號),

∴由題意可得,即有恒成立,

,則

,即有,

,則

時,上單調(diào)遞增,

,有且僅有一個根,

時,,單調(diào)遞增,當時,,單調(diào)遞減,

∴當時,取得最小值,為,∴

∴實數(shù)的取值范圍

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某次考試,班主任從全班同學中隨機抽取一個容量為8的樣本,他們的數(shù)學物理分數(shù)對應(yīng)如下表:

學生編號

1

2

3

4

5

6

7

8

數(shù)學分數(shù)

60

65

70

75

80

85

90

95

物理分數(shù)

72

77

80

84

88

90

93

95

繪出散點圖如下:

根據(jù)以上信息,判斷下列結(jié)論:

①根據(jù)此散點圖,可以判斷數(shù)學成績與物理成績具有線性相關(guān)關(guān)系;

②根據(jù)此散點圖,可以判斷數(shù)學成績與物理成績具有一次函數(shù)關(guān)系;

③甲同學數(shù)學考了80分,那么,他的物理成績一定比數(shù)學只考了60分的乙同學的物理成績要高.

其中正確的個數(shù)為( .

A.0B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是直角梯形,∠DAB90°ADBCAD⊥側(cè)面PAB,△PAB是等邊三角形,DAAB2,BC,E是線段AB的中點.

1)求證:PECD;

2)求PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級, 一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數(shù)超過20天的月份有5個

②第二季度與第一季度相比,空氣達標天數(shù)的比重下降了

③8月是空氣質(zhì)量最好的一個月

④6月份的空氣質(zhì)量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,x軸的正半軸為極軸,建立坐標系,兩個坐標系取相同的單位長度.已知直線的參數(shù)方程為,曲線的極坐標方程為

(1)求曲線的直角坐標方程

(2)設(shè)直線與曲線相交于兩點,時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,為正三角形.,且與底面所成角的正切值為.

1)證明:平面平面;

2是線段上一點,記,是否存在實數(shù),使二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于點,若函數(shù)滿足:,都有,就稱這個函數(shù)是點A限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點O限定函數(shù)的序號是______.已知點在函數(shù)的圖象上,若函數(shù)是點A限定函數(shù),則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購

偶爾或不用網(wǎng)購

合計

男性

50

100

女性

70

100

合計

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】變量滿足約束條件,若目標函數(shù)(其中)僅在處取得最大值,則的取值范圍為__________.

查看答案和解析>>

同步練習冊答案