【題目】已知函數(shù).
(1)若,證明:;
(2)若只有一個極值點,求的取值范圍,并證明:.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)構造函數(shù)利用導數(shù)易得,即證得結論,(2)研究導函數(shù)零點,先求導數(shù),再根據(jù)導函數(shù)零點,根據(jù)a的正負分類討論:當時,單調(diào),再根據(jù)零點存在定理得有且僅有一個零點;當時,先增后減,再根據(jù)零點存在定理得有且僅有兩個零點;最后研究極值點函數(shù)值范圍:繼續(xù)利用導數(shù)研究函數(shù)單調(diào)性,根據(jù)單調(diào)性確定取值范圍.
試題解析:(1)∵,∴要證,即證.
設,
令得,
且,單調(diào)遞増;,單調(diào)遞減,
∴,
即成立,也即.
(2)設,.
①當時,令得;.
,單調(diào)遞増;,單調(diào)遞減.
若,恒成立,無極值;
若,即,∴.
∵,∴由根的存在性定理知,在上必有一根.
∵,下證:當,.
令,∴.
當時,單調(diào)遞増;當時,單調(diào)遞減,
∴當時,,
∴當時,,即,
由根的存在性定理知,在上必有一根.
此時在上有兩個極值點,故不符合題意.
②當時,恒成立,單調(diào)遞增,
當時,;
當時,,下證:當時,.
令,∵在上單調(diào)遞減,∴,
∴當時,,
∴由根的存在性定理知,在上必有一根.
即有唯一的零點,只有一個極值點,且,滿足題意.
∴.
由題知,又,∴,
∴.
設,,
當,單調(diào)遞減,
∴,∴成立.
科目:高中數(shù)學 來源: 題型:
【題目】某化工廠生產(chǎn)甲、乙兩種肥料,生產(chǎn)1車皮甲種肥料能獲得利潤10000元,需要的主要原料是磷酸鹽4噸,硝酸鹽8噸;生產(chǎn)1車皮乙種肥料能獲得利潤5000元,需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現(xiàn)庫存有磷酸鹽10噸,硝酸鹽66噸,在此基礎上生產(chǎn)這兩種肥料.問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值為A,若存在實數(shù)x1 , x2 , 使得對任意實數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1﹣x2|的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+
(1)若函數(shù)有兩個極值點,求實數(shù)a的取值范圍;
(2)對所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為( )
A. 或﹣1
B.2或
C.2或1
D.2或﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子裝有六張卡片,上面分別寫著如下六個函數(shù):,,,
(I)從中任意拿取張卡片,若其中有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;
(II)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 圖象過點(﹣1,2),且在該點處的切線與直線x﹣5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P,Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com