(2013•朝陽區(qū)二模)如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PDEA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點.
(Ⅰ)求證:FG平面PDE;
(Ⅱ)求證:平面FGH⊥平面AEB;
(Ⅲ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.
精英家教網(wǎng)
(Ⅰ)證明:因為F,G分別為PB,BE的中點,所以FGPE.
又因為FG?平面PED,PE?平面PED,所以,F(xiàn)G平面PED.…(4分)
(Ⅱ)因為EA⊥平面ABCD,所以EA⊥CB.
又因為CB⊥AB,AB∩AE=A,所以CB⊥平面ABE.
由已知F,H分別為線段PB,PC的中點,所以FHBC,則FH⊥平面ABE.
而FH?平面FGH,所以平面FGH⊥平面ABE.…(9分)
(Ⅲ)在線段PC上存在一點M,使PB⊥平面EFM.證明如下:
在直角三角形AEB中,因為AE=1,AB=2,所以BE=
5

在直角梯形EADP中,因為AE=1,AD=PD=2,所以PE=
5

所以PE=BE.又因為F為PB的中點,所以EF⊥PB.
要使PB⊥平面EFM,只需使PB⊥FM.
因為PD⊥平面ABCD,所以PD⊥CB,又因為CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,則△PFM△PCB,可得
PM
PB
=
PF
PC

由已知可求得PB=2
3
,PF=
3
,PC=2
2
,所以PM=
3
2
2
.…(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)為了解某市今年初二年級男生的身體素質(zhì)狀況,從該市初二年級男生中抽取了一部分學生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學生擲實心球均不超過12米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成[2,4),[4,6),[6,8),[8,10),[10,12]五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在10米到12米之間.
(Ⅰ)求實數(shù)a的值及參加“擲實心球”項目測試的人數(shù);
(Ⅱ)根據(jù)此次測試成績的結果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績?yōu)閮?yōu)秀的概率;
(Ⅲ)若從此次測試成績不合格的男生中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)已知等差數(shù)列{an}的公差為-2,a3是a1與a4的等比中項,則首項a1=
8
8
,前n項和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:
①F(x)=|f(x)|; 
②函數(shù)F(x)是奇函數(shù);
③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)點P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點,則
PA
PC1
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函數(shù)f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步練習冊答案