【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點(diǎn).
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
【答案】
(1)證明:連接MP,因?yàn)镸、P分別為AB,BC的中點(diǎn)
∵M(jìn)P∥AC,MP= ,
又因?yàn)樵谥比庵鵄BC﹣A1B1C1中,∴AC∥A1C1,AC=A1C1
且N是A1C1的中點(diǎn),∴MP∥C1N,MP=C1N
∴四邊形MPC1N是平行四邊形,∴C1P∥MN
∵C1P面MNC,MN面MNC,∴C1P∥平面MNC;
(2)證明:在△ABC中,CA=CB,M為AB的中點(diǎn),∴CM⊥AB.
在直三棱柱ABC﹣A1B1C1中,B1B⊥面ABC.
∵CM面ABC,∴BB1⊥CM
由因?yàn)锽B1∩AB=B,BB1,AB平面面ABB1A1
又CM平面MNC,
∴平面MNC⊥平面ABB1A1.
【解析】(1)連接MP,只需證明四邊形MPC1N是平行四邊形,即可得MN∥C1P∵C1P,即可證得C1P∥平面MNC;(2)只需證明CM⊥平面MNC,即可得平面MNC⊥平面ABB1A1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市電視臺(tái)為了宣傳,舉辦問(wèn)答活動(dòng),隨機(jī)對(duì)該市15至65歲的人群進(jìn)行抽樣,頻率分布直方圖及回答問(wèn)題統(tǒng)計(jì)結(jié)果如表所示:
組號(hào) | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | a | 0.9 |
第3組 | [35,45) | 27 | x |
第4組 | [45,55) | b | 0.36 |
第5組 | [55,65) | 3 | y |
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,電視臺(tái)決定在所抽取的6人中隨機(jī)抽取3人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第3組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且btanB= .
(1)求角B的值;
(2)若△ABC的面積為 ,a+c=8,求邊b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinxcos2x,下列結(jié)論正確的是( )
A.y=f(x)的圖象關(guān)于 對(duì)稱(chēng)
B.y=f(x)的圖象關(guān)于 對(duì)稱(chēng)
C.y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng)
D.y=f(x)不是周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 在(﹣1,+∞)是增函數(shù).
(1)當(dāng)b=1時(shí),求a的取值范圍.
(2)若g(x)=f(x)﹣1008沒(méi)有零點(diǎn),f(1)=0,求f(﹣3)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1 , F2 , 線(xiàn)段OF1 , OF2的中點(diǎn)分別為B1 , B2 , 且△AB1B2是面積為4的直角三角形.過(guò)B1作l交橢圓于P、Q兩點(diǎn),使PB2垂直QB2 , 求直線(xiàn)l的方程 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,Sn是其前n項(xiàng)和.已知a1+a3=16,S4=28.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)當(dāng)n取何值時(shí)Sn最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}滿(mǎn)足a1=1,a2=2,b1=2,且對(duì)任意的正整數(shù)i,j,k,l,當(dāng)i+j=k+l時(shí),都有ai+bj=ak+bl , 則 的值是( )
A.2012
B.2013
C.2014
D.2015
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com