【題目】某公司為強化自己的市場競爭地位,決定擴大公司規(guī)模,拓展業(yè)務(wù),建立連鎖公司,連鎖公司利潤的20%歸總公司,建立連鎖公司的數(shù)量與單個公司月平均利潤的關(guān)系如下表所示:
連鎖公司數(shù)量/個 | 5 | 6 | 7 | 8 | 9 |
單個公司月平均利潤/十萬元 | 8 | 6 | 4.5 | 3.5 | 3 |
由相關(guān)系數(shù)可以反映兩個變量相關(guān)性的強弱,,認為變量相關(guān)性很強;,認為變量相關(guān)性一般;,認為變量相關(guān)性較弱.
(1)計算相關(guān)系數(shù),并判斷變量、相關(guān)性強弱;
(2)求關(guān)于的線性回歸方程
(3)若一個地區(qū)連鎖公司的前期投入(十萬元)與數(shù)量的關(guān)系為,根據(jù)所求回歸方程從公司利潤角度幫公司對一個地區(qū)連鎖公司數(shù)量做出決策.
附注:參考數(shù)據(jù):,
參考公式:相關(guān)系數(shù),
線性回歸方程中,,.
【答案】(1),變量、相關(guān)性很強;(2);(3)6個
【解析】
(1)根據(jù)給出的數(shù)據(jù)和公式,求出相關(guān)系數(shù),并判斷變量、相關(guān)性強弱;
(2)根據(jù)給出的數(shù)據(jù)和公式,求出關(guān)于的線性回歸方程;
(3)將總公司利潤表過出來,再根據(jù)何時取最大值,幫公司對一個地區(qū)連鎖公司數(shù)量做出決策.
(1)由題,
則
則,
則,變量、相關(guān)性很強;
(2)由題,
又,
故.
(3)總公司利潤
,
即,
對稱軸為,故當(dāng)時,總公司利潤利潤最大,
故公司對一個地區(qū)連鎖公司數(shù)量為6個.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍兩種顏色的單車,已知黃、藍兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場中隨機抽取5輛單車進行體驗,若每輛單車被抽取的可能性相同.
(1)求抽取的5輛單車中有2輛是藍色顏色單車的概率;
(2)在騎行體驗過程中,發(fā)現(xiàn)藍色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術(shù)部門作進一步抽樣檢測,并規(guī)定若抽到的是藍色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過()次.在抽樣結(jié)束時,已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)D是圓O:x2+y2=16上的任意一點,m是過點D且與x軸垂直的直線,E是直線m與x軸的交點,點Q在直線m上,且滿足2|EQ||ED|.當(dāng)點D在圓O上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程.
(2)已知點P(2,3),過F(2,0)的直線l交曲線C于A,B兩點,交直線x=8于點M.判定直線PA,PM,PB的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點, 為其右焦點,點滿足.
①證明: 為定值;
②設(shè)直線與橢圓有兩個不同的交點,與軸交于點.若成等差數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)幾年前對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布扇形圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990-1999年之間出生的人群,80后指1980-1989年之間出生的人群,80前指179年及以前出生的人群.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.
(Ⅰ)試確定, 的值,并估計每日應(yīng)準備紀念品的數(shù)量;
(Ⅱ)為了迎接春節(jié),商場進行讓利活動,一次購物款元及以上的一次返利元;一次購物不超過元的按購物款的百分比返利,具體見下表:
一次購物款(單位:元) | ||||
返利百分比 |
請問該商場日均大約讓利多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個特定時段內(nèi),以點E為中心的7n mile以內(nèi)海域被設(shè)為警戒水域.點E正北55n mile處有一個雷達觀測站A,某時刻測得一艘勻速直線行駛的船只位于點A北偏東45°且與點A相距40n mile的位置B,經(jīng)過40分鐘又測得該船已行駛到點A北偏東(其中,)且與點A相距10n mile的位置C.
(I)求該船的行駛速度(單位:n mile /h);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會進入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)判斷函數(shù)在區(qū)間上零點的個數(shù);
(2)函數(shù)在區(qū)間上的極值點從小到大分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當(dāng)時,求函數(shù)的反函數(shù);
(2)若,求函數(shù)的值域并寫出函數(shù)的單調(diào)區(qū)間;
(3)記函數(shù),若函數(shù)的最大值為5,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com