如圖,以
3
2
為離心率的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點分別為A和B,點P是橢圓位于x軸上方的一點,且△PAB的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)點Q是橢圓位于x軸下方的一點,直線AP、BQ的斜率分別為k1,k2,若k1=7k2,設(shè)△BPQ與△APQ的面積分別為S1,S2,求S1-S2的最大值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)由已知條件推導(dǎo)出
c
a
=
3
2
ab=2
a2=b2+c2
,由此能求出橢圓方程.
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),設(shè)直線PQ的方程為x=my+t,代入
x2
4
+y2=1,得(m2+4)y2+2mty+t2-4=0利用根的判別式、韋達定理、直線斜率公式能求出S1-S2的最大值.
解答: 解:(Ⅰ)∵以
3
2
為離心率的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點分別為A和B,
點P是橢圓位于x軸上方的一點,且△PAB的面積最大值為2,
c
a
=
3
2
ab=2
a2=b2+c2
,(2分)
解得a=2,b=1,c=
3
,
∴橢圓方程為
x2
4
+y2=1.(4分)
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),
設(shè)直線PQ的方程為x=my+t,代入
x2
4
+y2=1,
得(m2+4)y2+2mty+t2-4=0,(5分)
△=4m2t2-4m2t2-16t2+16m2+64=-16t2+16m2+64,
∵A(-2,0),B(2,0),直線AP、BQ的斜率分別為k1,k2,
∴k1=
y1
x1+2
,k2=
y2
x2-2
,
由k1=7k2,得
y1
x1+2
=
7y2
x2-2
,
y12(x2-2)2
y12(x1+2)2
=49
,∴
(1-
x12
4
)(x2-2)2
(1-
x22
4
)(x1+2)
=49
,(7分)
(2-x1)(2-x2)
(2+x1)(2+x2)
=49,∴12x1x2+25(x1+x2)+48=0,①
x1x2=(my1+t)(my2+t)=
4(t2-m2)
m2+4
,
x1+x2=(my1+t)+(my2+t)=
8t
m2+4

代入①得6t2+25t+24=0,得t=-
3
2
,或t=-
8
3
(是增根,舍去),(9分)
y1+y2=
3m
m2+4
y1y2=
-
7
4
m2+4
,(10分)
所以|y1-y2|2=(y1+y22-4y1y2=
16m2+28
(m2+4)2

=-36(
1
m2+4
2+16×
1
m2+4

=-36(
1
m2+4
-
2
9
2+
16
9
16
9

當(dāng)m2=
1
2
時最大值.(11分)
∴S1-S2=
1
2
×3×|y1-y2|
=
3
2
×
16
9
=≤2,
∴S1-S2的最大值為2.(12分)
點評:本題考查橢圓方程的求法,考查兩個三角形面積之差的最大值的求法,綜合性強,難度大,解題時要注意等價轉(zhuǎn)化思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、梯形可以確定一個平面
B、圓心和圓上兩點可以確定一個平面
C、兩條直線a,b沒有公共點,那么a與b是異面直線
D、若a,b是兩條直線,α,β是兩個平面,且a?α,b?β,則a,b是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1﹙a>0,b>0﹚,F(xiàn)1,F(xiàn)2是其左右焦點,若橢圓的離心率為
1
2
,橢圓的焦點到相應(yīng)準(zhǔn)線的距離為3,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓上是否存在一點M,使點M到其左準(zhǔn)線的距離MN是MF1,MF2的等比中項?若存在,求出該點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
a2
=1(a>b>0)的左、右焦點為F1,F(xiàn)2,短軸的兩個端點分別為A,B,且滿足|
F1A
+
F1B
|=|
F2A
-
F2B
|,橢圓C經(jīng)過點(
2
,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點M(
2
3
,0)且斜率為k的動直線l與橢圓C相交于P,Q兩點,問:在x軸的正半軸上是否存在一個定點T,使得無論直線l如何轉(zhuǎn)動,以PQ為直徑的圓恒過定點T?若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P(-2,1)在拋物線x2=2py(p>0)上,且到圓C:x2+(y+b)2=1上點的最小距離為1.
(Ⅰ)求p和b的值;
(Ⅱ)過點P作兩條斜率互為相反數(shù)的直線,分別與拋物線交于兩點A,B,若直線AB與圓C交于不同兩點M,N.
(i)證明直線AB的斜率為定值;
(ii)求△PMN面積取最大值時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)的焦點為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過F作兩條互相垂直的直線l1與l2,分別交拋物線C于A、B與D、E,設(shè)AB、DE的中點分別為M、N,求△FMN面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校設(shè)計了一個實驗學(xué)科的考查方案:考生從6道備選題中一次隨機抽取3道題,按照題目要求獨立完成全部實驗操作,并規(guī)定:在抽取的3道題中,至少正確完成其中2道題便可通過考查.已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都為
2
3
,且每題正確完成與否互不影響.
(1)求考生甲正確完成題目個數(shù)ξ的分布列和數(shù)學(xué)期望;
(2)用統(tǒng)計學(xué)知識分析比較甲、乙兩考生哪位實驗操作能力強及哪位通過考查的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0),定點M(0,5),直線l:y=
p
2
與y軸交于點F,O為原點,若以O(shè)M為直徑的圓恰好過l與拋物線C的交點.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點M作直線交拋物線C于A,B兩點,連AF,BF延長交拋物線分別于A′,B′,求證:拋物線C分別過A′,B′兩點的切線的交點Q在一條定直線上運動.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列命題
①命題“對任意的x<0,x3-x2+1≤0”的否定是“存在x≥0,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點有2個;③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=0;
④若函數(shù)f(x)=
ax-5,(x>6)
(4-
a
2
)x+4,(x≤6)
在R上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為(1,8).       
其中真命題的序號是
 
(寫出所有正確命題的編號).

查看答案和解析>>

同步練習(xí)冊答案