學(xué)校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的考查方案:考生從6道備選題中一次隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,并規(guī)定:在抽取的3道題中,至少正確完成其中2道題便可通過考查.已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都為
2
3
,且每題正確完成與否互不影響.
(1)求考生甲正確完成題目個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望;
(2)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩考生哪位實(shí)驗(yàn)操作能力強(qiáng)及哪位通過考查的可能性大?
考點(diǎn):概率的應(yīng)用,離散型隨機(jī)變量的期望與方差
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)確定考生甲正確完成實(shí)驗(yàn)操作的題目個(gè)數(shù)的取值,求出相應(yīng)的概率,可得考生甲正確完成題目個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望;
(2)設(shè)考生乙正確完成實(shí)驗(yàn)操作的題目個(gè)數(shù)為η,求出相應(yīng)的期望與方差,比較,即可得出結(jié)論.
解答: 解:(1)設(shè)考生甲正確完成實(shí)驗(yàn)操作的題目個(gè)數(shù)分別為ξ,則ξ可能取值為1,2,3,
P(ξ=1)=
C
1
4
C
2
2
C
3
6
=
1
5
,P(ξ=2)=
C
2
4
C
1
2
C
3
6
=
3
5
,P(ξ=3)=
C
3
4
C
0
2
C
3
6
=
1
5
…(3分)
∴考生甲正確完成題目數(shù)的分布列為
ξ 1 2 3
P
1
5
3
5
1
5
Eξ=1×
1
5
+2×
3
5
+3×
1
5
=2
…(5分)
(2)設(shè)考生乙正確完成實(shí)驗(yàn)操作的題目個(gè)數(shù)為η.
∵η~B(3,
2
3
),其分布列為:P(η=k)=
C
k
3
(
2
3
)k(
1
3
)3-k,k=0,1,2,3

Eη=3×
2
3
=2
…(6分)
Dξ=(1-2)2×
1
5
+(2-2)2×
3
5
+(3-2)2×
1
5
=
2
5
Dη=3×
2
3
×
1
3
=
2
3
…(8分)
∴Dξ<Dη
P(ξ≥2)=
3
5
+
1
5
=0.8
,P(η≥2)=
12
27
+
8
27
≈0.74
…(10分)
∴P(ξ≥2)>P(η≥2)
①?gòu)淖鰧?duì)題數(shù)的數(shù)學(xué)期望考查,兩人水平相當(dāng);從做對(duì)題數(shù)的方差考查,甲較穩(wěn)定;
②從至少完成2題的概率考查,甲獲得通過的可能性大,
因此,可以判斷甲的實(shí)驗(yàn)操作能力強(qiáng).…(12分)
點(diǎn)評(píng):本題考查隨機(jī)變量的分布列和數(shù)學(xué)期望,考查概率知識(shí) 的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a≥0,b≥0”是“
a+b
2
ab
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過定點(diǎn)(1,0),且與直線x=-1相切.
(1)求動(dòng)圓圓心C的軌跡方程;
(2)設(shè)A、B是軌跡C上兩個(gè)不同的點(diǎn),且OA⊥OB,證明直線AB恒過定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,以
3
2
為離心率的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn)分別為A和B,點(diǎn)P是橢圓位于x軸上方的一點(diǎn),且△PAB的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)點(diǎn)Q是橢圓位于x軸下方的一點(diǎn),直線AP、BQ的斜率分別為k1,k2,若k1=7k2,設(shè)△BPQ與△APQ的面積分別為S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AP過定點(diǎn)A(-3,0),且與圓B:(x-3)2+y2=64相切,點(diǎn)P的軌跡為曲線C;設(shè)Q為曲線C上(不在x軸上)的動(dòng)點(diǎn),過點(diǎn)A作OQ的平行線交曲線C于M,N兩點(diǎn).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在常數(shù)λ,使
AM
AN
PQ
2總成立,若存在,求λ;若不存在,說明理由;
(Ⅲ)求△MNQ的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)當(dāng)0<a<1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)x∈[
1
e
,+∞)時(shí)f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

天府新區(qū)的戰(zhàn)略定位是以城鄉(xiāng)一體化、全面現(xiàn)代化、充分引進(jìn)國(guó)際化為引領(lǐng),并以現(xiàn)代制造業(yè)為主,高端服務(wù)業(yè)集聚,宜業(yè)宜商宜居的國(guó)際化現(xiàn)代新城區(qū),為引進(jìn)優(yōu)秀廠家,某企業(yè)對(duì)16家廠家根據(jù)地域分為兩組,分別由A、B兩組評(píng)委對(duì)各項(xiàng)指標(biāo)進(jìn)行綜合評(píng)比打分,兩個(gè)組隊(duì)對(duì)16家廠家評(píng)比最后綜合得分的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù),若某廠家總和得分高于16家廠家的平均分則確定為優(yōu)秀廠家.
(Ⅰ)若在確定為優(yōu)秀廠家的廠家中隨機(jī)抽取2家進(jìn)行復(fù)查,求抽取的2家進(jìn)行復(fù)查的分別是A、B組評(píng)定出的優(yōu)秀廠家各1個(gè)的概率;
(Ⅱ)若從A、B兩組評(píng)定出確定為優(yōu)秀廠家中隨機(jī)選取3家人戶,記選取的3家來(lái)自B組評(píng)定出的優(yōu)秀廠家數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的頂點(diǎn)為A(0,5),離心率為
3
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線y=-4交橢圓E于點(diǎn)B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),點(diǎn)D在橢圓上,且滿足
BD
=m
BA
+n
BC
(m,n為實(shí)數(shù)),求m+n的最大值以及對(duì)應(yīng)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某超市中秋前30天月餅銷售總量f(t)與時(shí)間t(0<t≤30,t∈Z)的關(guān)系大致滿足f(t)=t2+10t+12,則該超市前t天平均售出(如前10天的平均售出為
f(10)
10
)的月餅最少為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案