的三個內(nèi)角A、B、C滿足,則(    )

A.一定是銳角三角形                   B.一定是直角三角形

C.一定是鈍角三角形                   D.可能是銳角三角形,也可能是鈍角三角形

 

【答案】

C

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c.
(1)若當∠A=θ時,cosA+2cos(
B+C
2
)
取到最大值,求θ的值;
(2)設(shè)∠A的對邊長a=1,當cosA+2cos(
B+C
2
)
取到最大值時,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(2)若△ABC的三個內(nèi)角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結(jié)論試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
=(2cosx+2
3
sinx,1)
,
n
=(cosx,-y)
,滿足
m
n
=0

(1)將y表示為x的函數(shù)f(x),并求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C對應(yīng)的邊長,若f(
A
2
)=3
,且a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且滿足:
a
3
cosA
=
b
sinB

(1)求A的大;
(2)若2sin2
B
2
+2sin2
C
2
=1
,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案