已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.

解:令y=2x+2-3•4x=-3•(2x2+4•2x
令t=2x,則y=-3t2+4t=
∵-1≤x≤0,∴
又∵對(duì)稱軸,
∴當(dāng),即
當(dāng)t=1即x=0時(shí),ymin=1
分析:先化簡(jiǎn),然后利用換元法令t=2x根據(jù)變量x的范圍求出t的范圍,將原函數(shù)轉(zhuǎn)化成關(guān)于t的二次函數(shù),最后根據(jù)二次函數(shù)的性質(zhì)求在閉區(qū)間上的最值即可.
點(diǎn)評(píng):本題主要考查了函數(shù)的最值及其幾何意義,以及利用換元法轉(zhuǎn)化成二次函數(shù)求解值域的問(wèn)題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算0.064 -
1
3
-(-
1
8
0+16 
3
4
+0.25 
1
2
+2log36-log312;
(2)已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知-1≤x≤0,求函數(shù)y=4•2x-3•4x的最大值和最小值.
(2)已知函數(shù)f(x)=x+
4x
.判斷f(x)在(0,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知-1≤x≤0,求函數(shù)y=2x+2-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0103 期中題 題型:解答題

已知-1≤x≤0,求函數(shù)y=4·2x-3·4x的最大值和最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案