已知四個(gè)數(shù):①y=x.sinx②y=x.cosx③y=x.|cosx|④y=x•2x的圖象如下,但順序被打亂.則按照?qǐng)D象從左到右的順序,對(duì)應(yīng)的函數(shù)序號(hào)正確一組的是( 。
A、①④②③B、①④③②
C、④①②③③④②①
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性和函數(shù)值得特點(diǎn)即可判斷.
解答: 解:①y=xsinx是偶函數(shù),其圖象關(guān)于y軸對(duì)稱;
②y=xcosx是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱;
③y=x|cosx|是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱.且當(dāng)x>0時(shí),y≥0;
④y=x2x為非奇非偶函數(shù),且當(dāng)x>0時(shí),y>0;當(dāng)x<0時(shí),y<0;
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性和函數(shù)值特點(diǎn),屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知幾何體的三視圖,則該幾何體的表面積為
 
,體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
1
x

(1)用函數(shù)單調(diào)性的定義證明:函數(shù)f(x)在區(qū)間(0,+∞)上為增函數(shù);
(2)方程2t•f(4t)-mf(2t)=0,當(dāng)t∈[1,2]時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)(x,y)在不等式組
x+y≥0
x+2y-2≥0
x+3y-3≥0
表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則z=2x+3y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時(shí),f(x)=x-2,則有下面三個(gè)式子:①f(sin
1
2
)<f(cos
1
2
);②f(sin
π
3
)<f(cos
π
3
);③f(sin1)<f(cos1);其中一定成立的是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=
3
2x-1
+a(a∈R).
(1)當(dāng)a=-1時(shí),分別求函數(shù)y=f(x)的定義域和零點(diǎn);
(2)當(dāng)f(x)為奇函數(shù)時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|log4x<1},集合B={x|2x<8},則A∩B等于(  )
A、(-∞,4)
B、(0,4)
C、(0,3)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
7x-4
-
7x-5
=
4x-1
-
4x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個(gè)很神秘的地方,那里有很多雕塑,每個(gè)雕塑都是由蝴蝶組成的,第一個(gè)雕塑有3只蝴蝶,第二個(gè)雕塑有5只蝴蝶,第三個(gè)雕塑有7只蝴蝶,第四個(gè)雕塑有9只蝴蝶,以后都是按著這一形式延伸到很遠(yuǎn),學(xué)學(xué)和思思看不到盡頭在那里,那么你知道第102個(gè)雕塑有多少只蝴蝶嗎?由999只蝴蝶組成的雕塑是第多少個(gè)呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案