若點(x,y)在不等式組
x+y≥0
x+2y-2≥0
x+3y-3≥0
表示的平面區(qū)域內(nèi)運動,則z=2x+3y的取值范圍是
 
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
x+y≥0
x+2y-2≥0
x+3y-3≥0
作出可行域如圖,

聯(lián)立
x+y=0
x+2y-2=0
,解得:B(-2,2),
化目標(biāo)函數(shù)z=2x+3y為y=-
2
3
x+
z
3

由圖可知,當(dāng)直線y=-
2
3
x+
z
3
過B時,直線在y軸上的截距最小,z最小,此時z=2×(-2)+3×2=2.
∴z=2x+3y的取值范圍是[2,+∞).
故答案為:[2,+∞).
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2+mx-
1
4
=0與拋物線y2=4x的準(zhǔn)線相切,則m=( 。
A、1
B、
3
4
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
①命題“在△ABC中,若A=B,則sinA=sinB”的逆命題為真命題;
②若動點P到兩定點F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動點P的軌跡為線段F1F2;
③若p∧q為假命題,則p,q都是假命題;
④設(shè)x∈R,則“x2-3x>0”是“x>4”的必要不充分條件;
⑤若實數(shù)1,m,9成等比數(shù)列,則圓錐曲線
x2
m
+y2=1的離心率為
6
3
;
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比為q的等比數(shù)列.
(Ⅰ)推導(dǎo){an}的前n項和公式;
(Ⅱ)設(shè)q≠1,證明數(shù)列{an+2}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近期由于某些原因,國內(nèi)進口豪華轎車紛紛降價,某豪車原價為200萬元,連續(xù)兩次降價a%后,售價為148萬元,則下面所列方程正確的是(  )
A、200(1+a%)2=148
B、200(1-a%)2=148
C、200(1-2a%)=148
D、200(1-a%)=148

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)(ω>0)的最小正周期為π.
(1)求f(x).
(2)求f(x)單調(diào)區(qū)間及其對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四個數(shù):①y=x.sinx②y=x.cosx③y=x.|cosx|④y=x•2x的圖象如下,但順序被打亂.則按照圖象從左到右的順序,對應(yīng)的函數(shù)序號正確一組的是( 。
A、①④②③B、①④③②
C、④①②③③④②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-2|,若m≠n,且f(m)=f(n),則m+n的取值范圍是( 。
A、(1,+∞)
B、(2,+∞)
C、(-∞,1)
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過原點,且點A(
3
,1)到直線l的距離為1,則直線l的斜率k=
 

查看答案和解析>>

同步練習(xí)冊答案