對(duì)于所有滿足1≤m≤n≤5的自然數(shù)m、n,極坐標(biāo)方程所表示的不同雙曲線有________條.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2
5
,點(diǎn)(
5
,
4
3
)
在該橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的一點(diǎn)p在第一象限,且滿足PF1⊥PF2,⊙O的方程為x2+y2=4.求點(diǎn)p坐標(biāo),并判斷直線pF2與⊙O的位置關(guān)系;
(3)設(shè)點(diǎn)A為橢圓的左頂點(diǎn),是否存在不同于點(diǎn)A的定點(diǎn)B,對(duì)于⊙O上任意一點(diǎn)M,都有
MB
MA
為常數(shù),若存在,求所有滿足條件的點(diǎn)B的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式mx2-2x-m+1<0.
(1)若對(duì)于所有的實(shí)數(shù)x,不等式恒成立,求m的取值范圍;
(2)設(shè)不等式對(duì)于滿足|m|≤2的一切m 的值都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京)設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 1 -0.8
0.1 -0.3 -1
(2)設(shè)數(shù)表A∈S(2,3)形如
1 1 c
a b -1
求K(A)的最大值;
(3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線l:2x+y-3=0上,過(guò)點(diǎn)P作圓O的兩條切線,A,B為兩切點(diǎn).
(1)求切線長(zhǎng)PA的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(2)點(diǎn)M為直線y=x與直線l的交點(diǎn),若在平面內(nèi)存在定點(diǎn)N(不同于點(diǎn)M),滿足:對(duì)于圓 O上任意一點(diǎn)Q,都有
QN
QM
為一常數(shù),求所有滿足條件的點(diǎn)N的坐標(biāo).
(3)求
PA
PB
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案