【題目】對于定義在上的函數,若存在距離為的兩條直線和,使得對任意都有恒成立,則稱函數有一個寬度為的通道,給出下列函數:①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數的個數是( )
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】設A是實數集,滿足若a∈A,則∈A,a≠1,且1A.
(1)若2∈A,則集合A中至少還有幾個元素?求出這幾個元素.
(2)集合A中能否只含有一個元素?請說明理由.
(3)若a∈A,證明:1-∈A.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義滿足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”的集合A為“閉集”.試問數集N,Z,Q,R是否分別為“閉集”?若是,請說明理由;若不是,請舉反例說明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個內角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中, , , ,點是邊的中點,將沿折起,使平面平面,連接, , ,得到如圖所示的幾何體.
(Ⅰ)求證: 平面.
(Ⅱ)若, 與其在平面內的正投影所成角的正切值為,求點到平面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4;坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程.
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是長方形,側棱底面,且,過D作于F,過F作交 PC于E.
(Ⅰ)證明:平面PBC;
(Ⅱ)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產新樣式的單車,已知生產新樣式單車的固定成本為20000元,每生產一件新樣式單車需要增加投入100元.根據初步測算,自行車廠的總收益(單位:元)滿足分段函數,其中 是新樣式單車的月產量(單位:件),利潤總收益總成本.
(1)試將自行車廠的利潤元表示為月產量的函數;
(2)當月產量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com