15.圓x2+y2=9的切線MT過雙曲線$\frac{x^2}{9}$-$\frac{y^2}{12}$=1的左焦點F,其中T為切點,M為切線與雙曲線右支的交點,P為MF的中點,則|PO|-|PT|=2$\sqrt{3}$-3.

分析 由雙曲線方程,求得c=$\sqrt{21}$,根據(jù)三角形中位線定理和圓的切線的性質,可知|PO|=$\frac{1}{2}$|PF′|,|PT|=$\frac{1}{2}$|MF|-|FT|,并結合雙曲線的定義可得|PO|-|PT|=|FT|-$\frac{1}{2}$(|PF|-|PF′|)=2$\sqrt{3}$-3.

解答 解:設雙曲線的右焦點為F′,則PO是△PFF′的中位線,
∴|PO|=$\frac{1}{2}$|PF′|,|PT|=$\frac{1}{2}$|MF|-|FT|,
根據(jù)雙曲線的方程得:
a=3,b=2$\sqrt{3}$,c=$\sqrt{21}$,
∴|OF|=$\sqrt{21}$,
∵MF是圓x2+y2=9的切線,|OT|=3,
∴Rt△OTF中,|FT|=$\sqrt{丨OF{丨}^{2}-丨OT{丨}^{2}}$=2$\sqrt{3}$,
∴|PO|-|PT|=$\frac{1}{2}$|PF′|-($\frac{1}{2}$|MF|-|FT|)=|FT|-$\frac{1}{2}$(|PF|-|PF′|)=2$\sqrt{3}$-3,
故答案為:2$\sqrt{3}$-3.

點評 本題考查了雙曲線的定義標準方程及其性質、三角形的中位線定理、圓的切線的性質、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,則實數(shù)a的值為( 。
A.0或1或2B.1或2C.0D.0或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.給定下列四個命題:
①若$\frac{1}{a}$<$\frac{1}$<0,則b2>a2
②已知直線l,平面α,β為不重合的兩個平面,若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④設a>b>1,c<0,則logb(a-c)>loga(b-c).
其中真命題編號是①③④(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=-x2-x+4 (x∈R)的遞減區(qū)間是[$-\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.兩圓C1:(x+2)2+(y+1)2=4與C2:(x-2)2+(y-1)2=4的位置關系為(  )
A.內切B.外切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左.右焦點分別為F1,F(xiàn)2,上頂點與兩焦點構成的三角形為正三角形.
(1)求橢圓C的離心率;
(2)過點F2的直線與橢圓C交于A.B兩點,若△F1AB的內切圓的面積的最大值為$\frac{9π}{16}$.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知圓O:(x-1)2+y2=9,圓O上的直線l:xcosθ+ysinθ=2+cosθ(0<θ<$\frac{π}{2}$)距離為1的點有( 。﹤.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.對于函數(shù)f1(x)、f2(x)、h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x)、f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x)、f2(x)的生成函數(shù)?并說明理由;
第一組:f1(x)=sinx,f2(x)=cosx,$h(x)=sin(x+\frac{π}{3})$
第二組:${f_1}(x)={x^2}-x$,${f_2}(x)={x^2}+x+1$,h(x)=x2-x+1;
(2)設f1(x)=log2x,${f_2}(x)={log_{\frac{1}{2}}}x$,a=2,b=1,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;
(3)設f1(x)=x(x>0),${f_2}(x)=\frac{1}{x}(x>0)$,取a>0,b>0,生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2,且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在平行四邊形ABCD中,若$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,則$\overrightarrow{AB}$=( 。
A.$\overrightarrow a+\overrightarrow b$B.$\overrightarrow a-\overrightarrow b$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

同步練習冊答案