6.在(1+x+x2)(x-$\frac{1}{x}$)6的展開式中,x2的系數(shù)為-5 (結(jié)果用數(shù)字表示).

分析 利用二項(xiàng)展開式的通項(xiàng)公式,即可得出結(jié)論.

解答 解:(x-$\frac{1}{x}$)6的展開式的通項(xiàng)為C6r(-1)rx6-2r
當(dāng)6-2r=2時,即r=2時,
當(dāng)6-2r=0時,即r=3時,
故(1+x+x2)(x-$\frac{1}{x}$)6的展開式中,x2的系數(shù)為C62(-1)2+C63(-1)3=15-20=-5,
故答案為:-5

點(diǎn)評 本題主要考查等價(jià)轉(zhuǎn)化的能力、考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=$\frac{π}{2}$,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點(diǎn).
(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于$\frac{π}{3}$,求二面角D-PB-A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的定義域和值域
y=$\frac{1}{2}+$$\frac{1}{{2}^{x}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,x),且$\overrightarrow{a}$⊥$\overrightarrow$.
(Ⅰ)求(2$\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)的值;
(Ⅱ)若m$\overrightarrow{a}$+$\overrightarrow$(m為實(shí)數(shù))與$\overrightarrow{a}$-2$\overrightarrow$平行,求|2m$\overrightarrow{a}$+$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列四個命題:
①由樣本數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必過樣本點(diǎn)的中心(${\overline x$,$\overline y}$);
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好;
③若線性回歸方程為$\hat y$=3-2.5x,則變量x每增加1個單位時,y平均減少2.5個單位;
④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄,殘差平方和越。
上述四個命題中,正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“?x∈R,x=|x|”的否定是( 。
A.“?x∈R,x≠|(zhì)x|”B.“?x∈R,x=|x|”C.“?x∈R,x≠|(zhì)x|”D.“?x∈R,x=-x”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)點(diǎn)A(1,-2),B(3,m),C(-1,4),若$\overrightarrow{AC}$•$\overrightarrow{CB}$=4,則實(shí)數(shù)m的值為( 。
A.6B.-5C.4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以下三個命題:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)隨機(jī)變量X~N(μ,σ2),當(dāng)μ一定時,σ越小,其密度函數(shù)圖象越“矮胖”;
(3)在回歸分析中,比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的,模型的擬合效果越好.
其中其命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商店舉行三周年店慶活動,每位會員交會員費(fèi)50元,可享受20元的消費(fèi),并參加一次抽獎活動,從一個裝有標(biāo)號分別為1,2,3,4,5,6的6只均勻小球的抽獎箱中,有放回的抽兩次球,抽得的兩球標(biāo)號之和為12,則獲一等獎價(jià)值a元的禮品,標(biāo)號之和為11或10,獲二等獎價(jià)值100元的禮品,標(biāo)號之和小于10不得獎.
(1)求各會員獲獎的概率;
(2)設(shè)商店抽獎環(huán)節(jié)收益為ξ元,求ξ的分布列;假如商店打算不賠錢,a最多可設(shè)為多少元?

查看答案和解析>>

同步練習(xí)冊答案