18.設(shè)點A(1,-2),B(3,m),C(-1,4),若$\overrightarrow{AC}$•$\overrightarrow{CB}$=4,則實數(shù)m的值為( 。
A.6B.-5C.4D.-3

分析 運用向量的坐標(biāo)運算:終點減起點坐標(biāo),再由向量的數(shù)量積的坐標(biāo)表示,解方程即可得到m的值.

解答 解:點A(1,-2),B(3,m),C(-1,4),
則$\overrightarrow{AC}$•$\overrightarrow{CB}$=(-2,6)•(4,m-4)=-8+6(m-4)=4,
解得m=6.
故選:A.

點評 本題考查向量的數(shù)量積的坐標(biāo)表示,考查向量的坐標(biāo)運算,化簡整理的運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為$\sqrt{3}$,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1
(Ⅱ)求銳二面角B-AC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C的對邊分別為a,b,c,若2csinA=atanC,則角C的大小是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在(1+x+x2)(x-$\frac{1}{x}$)6的展開式中,x2的系數(shù)為-5 (結(jié)果用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.拋物線x2=4y上一點P到焦點的距離為3,則點P到y(tǒng)軸的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.同時拋擲5枚均勻的硬幣160次,設(shè)5枚硬幣正好出現(xiàn)1枚正面向上,4枚反面向上的次數(shù)為ξ,則ξ的數(shù)學(xué)期望是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(1,2),若$\overrightarrow{a}$∥$\overrightarrow$,則tanx的值為( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是南陽市某中學(xué)在會操比賽中七位評委為甲、乙兩班打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0-9中的一個),去掉一個最高分和一個最低分后,甲、乙兩個班級的平均分分別為$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$,則一定有( 。
A.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$B.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$
C.$\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$D.$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.用五種不同的顏色對圖中的A,B,C,D,E五個區(qū)域進行著色,相鄰區(qū)域不能涂相同的顏色,則共有780種不同的著色方案.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案