17.已知雙曲線與橢圓$\frac{x^2}{4}+{y^2}=1$有相同的焦點(diǎn)F1,F(xiàn)2,P為它們的一個(gè)交點(diǎn),且${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=0$,則雙曲線方程為$\frac{{x}^{2}}{2}-{y}^{2}$=1.

分析 利用橢圓、雙曲線的定義,求出幾何量,即可得出雙曲線方程.

解答 解:由題意|PF1|+|PF2|=4,|PF1|2+|PF2|2=12,
∴|PF1||PF2|=2,
∴||PF1|-|PF2||=2$\sqrt{2}$,
∴$a=\sqrt{2}$,∴b=1,
∴雙曲線方程為$\frac{{x}^{2}}{2}-{y}^{2}$=1.
故答案為$\frac{{x}^{2}}{2}-{y}^{2}$=1.

點(diǎn)評(píng) 本題考查雙曲線方程,考查橢圓、雙曲線的定義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果關(guān)于x的不等式x2<ax+b的解集是{x|1<x<3},那么ba等于(  )
A.-81B.81C.-64D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.?dāng)?shù)列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1-an}是等差數(shù)列;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=-9,a4+a6=a5
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{a${\;}_{n}+{2}^{{a}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,則a,b,c三者的大小關(guān)系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足f'(x)-f(x)=x•ex,且$f(0)=\frac{1}{2}$,則$\frac{{x•{e^x}}}{f(x)}$的最大值為( 。
A.1B.-$\frac{1}{2}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某飛機(jī)失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島O附近.現(xiàn)派出四艘搜救船A,B,C,D,為方便聯(lián)絡(luò),船A,B始終在以小島O為圓心,100海里為半徑的圓上,船A,B,C,D構(gòu)成正方形編隊(duì)展開搜索,小島O在正方形編隊(duì)外(如圖).設(shè)小島O到AB的距離為x,∠AOB=α,D船到小島O的距離為d.
(1)請(qǐng)分別求d關(guān)于x,α的函數(shù)關(guān)系式d=g(x),d=f(α);并分別寫出定義域;
(2)當(dāng)A,B兩艘船之間的距離是多少時(shí)搜救范圍最大(即d最大).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)為偶函數(shù),且x≥0時(shí),f(x)=x-[x]([x]表示不超過(guò)x的最大整數(shù)).設(shè)g(x)=f(x)-kx-k(k∈R),若k=1,則函數(shù)g(x)有2個(gè)零點(diǎn);若函數(shù)g(x)三個(gè)不同的零點(diǎn),則k的取值范圍是$({-\frac{1}{3}}\right.,\left.{-\frac{1}{4}}]∪[{\frac{1}{3},\frac{1}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,在一個(gè)面積為8的矩形中隨機(jī)撒一粒黃豆,若黃豆落到陰影部分的概率為$\frac{1}{4}$,則陰影部分的面積為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案