【題目】已知函數(shù).
(1)若k≠0,試討論函數(shù)f(x)的奇偶性,并說明理由;
(2)已知f(x)在(﹣∞,0]上單調(diào)遞減,求實數(shù)k的取值范圍.
【答案】(1)見解析(2)(﹣∞,0]∪[1,+∞).
【解析】
(1)對k分和兩種情況結(jié)合函數(shù)奇偶性的定義討論;(2)設(shè)t=ex,x∈(﹣∞,0],則有0<t≤1,對k分和,結(jié)合復(fù)合函數(shù)的單調(diào)性分析得解.
(1)根據(jù)題意,函數(shù),
則f(﹣x)=ke﹣x+ex﹣1,
當k=1時,有f(x)=f(﹣x),函數(shù)f(x)為偶函數(shù),
當k≠1時,f(x)≠f(﹣x)且f(﹣x)≠﹣f(x),函數(shù)f(x)為非奇非偶函數(shù);
(2)根據(jù)題意,設(shè)t=ex,x∈(﹣∞,0],則有0<t≤1,則y=kt1,
又由t=ex為增函數(shù),對于y=kt1,
當k≤0時,y=kt1在(0,1]為減函數(shù),函數(shù)f(x)在R上遞減,符合題意,
當k>0時,函數(shù)f(x)在(0,)上為減函數(shù),在(,+∞)上為增函數(shù),
此時,若已知f(x)在(﹣∞,0]上單調(diào)遞減,必有1,解可得k≥1,
綜合可得:k的取值范圍為(﹣∞,0]∪[1,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個極值點和,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個平面垂直,下列命題中錯誤的是( 。
A.兩個平面內(nèi)分別垂直于交線的兩條直線相互垂直
B.一個平面內(nèi)的任一條直線必垂直于另一個平面.
C.一個平面內(nèi)存在直線垂直于另一個平面
D.一個平面內(nèi)的任意一條直線都垂直于另一個平面內(nèi)的無數(shù)條直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.
(1)求橢圓的方程;
(2)經(jīng)過點作直線,交橢圓于,兩點.如果恰好是線段的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型玩具廠研發(fā)生產(chǎn)一種新型玩具,年固定成本為10萬元,每生產(chǎn)千件需另投入3萬元,設(shè)該廠年內(nèi)共生產(chǎn)該新型玩具千件并全部銷售完,每千件的銷售收入為萬元,且滿足函數(shù)關(guān)系:.
(1)寫出年利潤(萬元)關(guān)于該新型玩具年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在此新型玩具的生產(chǎn)中所獲年利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值,用樣本估計總體.
(1)將直徑小于等于或直徑大于的零件認為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學(xué)期望;
(2)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求的單調(diào)遞增區(qū)間;
(2)當的圖像剛好與軸相切時,設(shè)函數(shù),其中,求證:存在極小值且該極小值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)的圖象,只要將函數(shù)的圖象( )
A.每一點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),再將所得圖象向左平移個長度
B.每一點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),再將所得圖象向左平移個長度
C.向左平移個長度,再將所得圖象每一點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變)
D.向左平移個長度,再將所得圖象每一點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com