分析 (1)利用兩角和差的正弦公式、二倍角公式化簡(jiǎn)函數(shù)的解析式為f(x)=2sin(2x-$\frac{π}{3}$),可得函數(shù)h(x)=2sin(2x+2t-$\frac{π}{3}$),再由 h(-$\frac{π}{6}$)=0 可得2t-$\frac{2π}{3}$=0,由此解得t的值.
(2)由h(A)=2sin(2A+$\frac{π}{3}$)=1,可解得A,由A的度數(shù)得到B+C的度數(shù),用B表示出C,代入($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC中,利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由正弦函數(shù)的值域確定出范圍即可.
解答 解:(1)∵函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1=2•$\frac{1-cos(\frac{π}{2}+2x)}{2}$-$\sqrt{3}$cos2x-1=1+sin2x-$\sqrt{3}$cos2x-1=2($\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$sin2x)=2sin(2x-$\frac{π}{3}$ ),
∴函數(shù)h(x)=f(x+t)=2sin(2x+2t-$\frac{π}{3}$),且它的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱,且t∈(0,$\frac{π}{2}$),即2t∈(0,π),
∴h(-$\frac{π}{6}$)=0,即 2sin(2t-$\frac{2π}{3}$)=0,
∴2t-$\frac{2π}{3}$=0,解得t=$\frac{π}{3}$.
(2)∵由已知可得:A∈(0,$\frac{π}{2}$),可得2A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
又∵由(1)可得:h(x)=f(x+t)=2sin(2x+$\frac{π}{3}$),
∴h(A)=2sin(2A+$\frac{π}{3}$)=1,可解得:2A+$\frac{π}{3}$=$\frac{5π}{6}$,可得:A=$\frac{π}{4}$,C=$\frac{3π}{4}$-B,
∴($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC=($\sqrt{3}$-1)sinB+$\sqrt{2}$sin($\frac{3π}{4}$-B)=($\sqrt{3}$-1)sinB+cosB+sinB=2sin(B+$\frac{π}{6}$),
∵0<B<$\frac{π}{2}$,∴$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,
∴$\frac{1}{2}$<sin(B+$\frac{π}{6}$)≤1,即1<2sin(B+$\frac{π}{6}$)≤2,
則sinB+sinC的范圍為(1,2].
點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式、二倍角公式的應(yīng)用,正弦函數(shù)的對(duì)稱性,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com