精英家教網 > 高中數學 > 題目詳情
4.已知實數x,y滿足$\left\{\begin{array}{l}{x≥0}\\{x-2y≥0}\\{y≥x-1}\end{array}\right.$,則z=ax+y(a>0)的最小值為( 。
A.0B.aC.2a+1D.-1

分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≥0}\\{x-2y≥0}\\{y≥x-1}\end{array}\right.$作出可行域如圖,

化目標函數z=ax+y(a>0)為y=-ax+z,
由圖可知,當直線y=-ax+z過A(0,-1)時,直線在y軸上的截距最小,z有最小值為-1.
故選:D.

點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.在復平面中,復數$\frac{1}{(1+i)^{2}+1}$+i4對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.四棱錐P-ABCD中,底面ABCD為矩形,$AB=2,BC=2\sqrt{2},E$為BC的中點,連接AE,BD,交點H,PH⊥平面ABCD,M為PD的中點.
(1)求證:平面MAE⊥平面PBD;
(2)設PE=1,求二面角M-AE-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點P,若|PF|=5,則點F到雙曲線的漸近線的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在平面直角坐標系xOy中,直線l的參數方程為$\left\{\begin{array}{l}{x=3+tcosφ}\\{y=1+tsinφ}\end{array}\right.$(t為參數),在以坐標原點為極點,x軸的正半軸為極軸的極坐標中,圓C的方程為ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐標方程;
(Ⅱ)當φ∈(0,π)時,l與C相交于P,Q兩點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.過點P(-3,1),Q(a,0)的光線經x軸反射后與圓x2+y2=1相切,則a的值為-$\frac{5}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.某科技博覽會展出的智能機器人有 A,B,C,D 四種型號,每種型號至少有 4 臺.要求每 位購買者只能購買1臺某種型號的機器人,且購買其中任意一種型號的機器人是等可能的.現在有 4 個人要購買機器人.
(Ⅰ)在會場展覽臺上,展出方已放好了 A,B,C,D 四種型號的機器人各一臺,現把他們 排成一排表演節(jié)目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設這 4 個人購買的機器人的型號種數為ξ,求ξ 的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.下列函數中,既是偶函數又存在零點的是( 。
A.y=x2+1B.y=|lgx|C.y=cosxD.y=ex-1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.函數y=2x-2+7的圖象恒過定點A,且點A在冪函數f(x)的圖象上,則f(3)=27.

查看答案和解析>>

同步練習冊答案