(2012•自貢一模)已知等差數(shù)列{an}滿足a3+a13-a8=2,則{an}的前15項和S15=( 。
分析:把已知等式左邊的前兩項利用等差數(shù)列的性質(zhì)變形,可求出a8的值,然后把所求的式子先利用等差數(shù)列的前n項和公式表示出來,再利用等差數(shù)列的性質(zhì)化簡,將a8的值代入即可求出值.
解答:解:∵a3+a13-a8=2,且等差數(shù)列{an},
∴2a8-a8=a8=2,
∴S15=
15(a1+a15
2
=15a8=30.
故選C
點評:此題考查了等差數(shù)列的前n項和公式,以及等差數(shù)列的性質(zhì),熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)已知
a
+
b
+
c
=
0
,且
a
c
的夾角為60°,|
b
|=
3
|
a
|,則cos<
a
b
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)已知函數(shù)f(x)=
2x     ,x≥0
x(x+1),x<0
,則f(-2)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)f(x)是以4為周期的奇函數(shù),f(
1
2
)=1
sinα=
1
4
,則f(4cos2α)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標x0代入導(dǎo)函數(shù)f′(x)的表達式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標x0代入導(dǎo)函數(shù)f′(x)的表達式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
n•2n-1
n•2n-1
 n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①對于任意x∈[0,1],總有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3.
(I)求f(0)的值;
(II)求函數(shù)f(x)的最大值;
(III)設(shè)數(shù)列{an}的前n項和為Sn,滿足a1=1,Sn=-
1
2
(an-3),n∈N*
,求證:f(a1)+f(a2)+…+f(an)<
3
2
log3
27
a
2
n

查看答案和解析>>

同步練習(xí)冊答案