在某批次的某種燈泡中,隨機地抽取200個樣品,并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于500天的燈泡是優(yōu)等品,壽命小于300天的燈泡是次品,其余的燈泡是正品.
壽命(天) 頻數(shù) 頻率
[100,200) 20 0.10
[200,300) 30 a
[300,400) 70 0.35
[400,500) b 0.15
[500,600) 50 0.25
合計 200 1
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出a,b的值;
(Ⅱ)某人從燈泡樣品中隨機地購買了n(n∈N*)個,如果這n個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求n的最小值;
(Ⅲ)某人從這個批次的燈泡中隨機地購買了3個進行使用,若以上述頻率作為概率,用X表示此人所購買的燈泡中次品的個數(shù),求X的分布列和數(shù)學(xué)期望.
考點:離散型隨機變量的期望與方差,分層抽樣方法
專題:概率與統(tǒng)計
分析:(Ⅰ)利用頻率分布表中的數(shù)據(jù)直接計算能求出a、b的值.
(Ⅱ)由頻率分布表知按分層抽樣法,購買燈泡數(shù)n=k+2k+k=4k(k∈N*)個,由此能求出n的最小值.
(Ⅲ)X的所有取值為0,1,2,3.分別求出相對應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
解答: (本小題滿分13分)
解:(Ⅰ)a=1-0.10-0.35-0.15-0.25=0.15,
b=200-20-30-70-50=30.…(2分)
(Ⅱ)由表可知:燈泡樣品中優(yōu)等品有50個,正品有100個,次品有50個,
∴優(yōu)等品、正品和次品的比例為50:100:50=1:2:1.…(4分)
∴按分層抽樣法,購買燈泡數(shù)n=k+2k+k=4k(k∈N*),
∴n的最小值為4.…(6分)
(Ⅲ)X的所有取值為0,1,2,3.…(7分)
由題意,購買一個燈泡,且這個燈泡是次品的概率為0.1+0.15=0.25,…(8分)
從本批次燈泡中購買3個,可看成3次獨立重復(fù)試驗,
P(X=0)=
C
0
3
×(1-
1
4
)3=
27
64
,
P(X=1)=
C
1
3
×
1
4
×(1-
1
4
)2=
27
64
,
P(X=2)=
C
2
3
×(
1
4
)2(1-
1
4
)1=
9
64
,
P(X=3)=
C
3
3
×(
1
4
)3=
1
64
.…(11分)
∴隨機變量X的分布列為:
X 0 1 2 3
P
27
64
27
64
9
64
1
64
…(12分)
∴X的數(shù)學(xué)期望E(X)=0×
27
64
+1×
27
64
+2×
9
64
+3×
1
64
=
3
4

…(13分)
(注:寫出X~B(3,
1
4
)
,P(X=k)=
C
k
3
(
1
4
)k(1-
1
4
)3-k
,k=0,1,2,3.請酌情給分)
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值),線段AB的中點為D,與直線l:y=kx+b平行的切線的切點為C(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點為切點).
(1)用k、b表示出C點、D點的坐標(biāo),并證明CD垂直于x軸;
(2)求△ABC的面積,證明△ABC的面積與k、b無關(guān),只與h有關(guān);
(3)小張所在的興趣小組完成上面兩個小題后,小張連AC、BC,再作與AC、BC平行的切線,切點分別為E、F,小張馬上寫出了△ACE、△BCF的面積,由此小張求出了直線l與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},{bn},{cn},已知a1=4,b1=3,c1=5,an+1=an,bn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*).
(1)求數(shù)列{cn-bn}的通項公式;
(2)求證:對任意n∈N*,bn+cn為定值;
(3)設(shè)Sn為數(shù)列{cn}的前n項和,若對任意n∈N*,都有p•(Sn-4n)∈[1,3],求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長為m+1(m>0)的線段AB的兩個端點A和B分別在x軸和y軸上滑動,點M是線段AB上的一點,且
AM
=m
MB

(1)求點M的軌跡Γ的方程,并判斷軌跡Γ為何種圓錐曲線;
(2)設(shè)過點Q(
1
2
,0)且斜率不為0的直線交軌跡Γ于C,D兩點.設(shè)點P在x軸上,且恒滿足
S△PQC
S△PQD
=
|PC|
|PD|
,試求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知U=R,集合M={x|x≤a-2或x≥a+3},N={x|-1≤x≤2}.
(1)若a=0,求(∁UM)∩(∁UN);
(2)若M∩N=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,射線OA、OB關(guān)于x軸對稱,且∠AOB=60°,在射線OA、OB上分別有動點P、Q滿足:S△POQ=9,設(shè)△POQ的重心為G.
(1)求G點的軌跡方程;
(2)點G到直線PQ距離的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)設(shè)
CE
CC1
(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
x
1+x2
的導(dǎo)數(shù).

查看答案和解析>>

同步練習(xí)冊答案