在某批次的某種燈泡中,隨機(jī)地抽取200個(gè)樣品,并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)等級(jí),其中壽命大于或等于500天的燈泡是優(yōu)等品,壽命小于300天的燈泡是次品,其余的燈泡是正品.
壽命(天) 頻數(shù) 頻率
[100,200) 20 0.10
[200,300) 30 a
[300,400) 70 0.35
[400,500) b 0.15
[500,600) 50 0.25
合計(jì) 200 1
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出a,b的值;
(Ⅱ)某人從燈泡樣品中隨機(jī)地購(gòu)買了n(n∈N*)個(gè),如果這n個(gè)燈泡的等級(jí)情況恰好與按三個(gè)等級(jí)分層抽樣所得的結(jié)果相同,求n的最小值;
(Ⅲ)某人從這個(gè)批次的燈泡中隨機(jī)地購(gòu)買了3個(gè)進(jìn)行使用,若以上述頻率作為概率,用X表示此人所購(gòu)買的燈泡中次品的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用頻率分布表中的數(shù)據(jù)直接計(jì)算能求出a、b的值.
(Ⅱ)由頻率分布表知按分層抽樣法,購(gòu)買燈泡數(shù)n=k+2k+k=4k(k∈N*)個(gè),由此能求出n的最小值.
(Ⅲ)X的所有取值為0,1,2,3.分別求出相對(duì)應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
解答: (本小題滿分13分)
解:(Ⅰ)a=1-0.10-0.35-0.15-0.25=0.15,
b=200-20-30-70-50=30.…(2分)
(Ⅱ)由表可知:燈泡樣品中優(yōu)等品有50個(gè),正品有100個(gè),次品有50個(gè),
∴優(yōu)等品、正品和次品的比例為50:100:50=1:2:1.…(4分)
∴按分層抽樣法,購(gòu)買燈泡數(shù)n=k+2k+k=4k(k∈N*),
∴n的最小值為4.…(6分)
(Ⅲ)X的所有取值為0,1,2,3.…(7分)
由題意,購(gòu)買一個(gè)燈泡,且這個(gè)燈泡是次品的概率為0.1+0.15=0.25,…(8分)
從本批次燈泡中購(gòu)買3個(gè),可看成3次獨(dú)立重復(fù)試驗(yàn),
P(X=0)=
C
0
3
×(1-
1
4
)3=
27
64

P(X=1)=
C
1
3
×
1
4
×(1-
1
4
)2=
27
64
,
P(X=2)=
C
2
3
×(
1
4
)2(1-
1
4
)1=
9
64

P(X=3)=
C
3
3
×(
1
4
)3=
1
64
.…(11分)
∴隨機(jī)變量X的分布列為:
X 0 1 2 3
P
27
64
27
64
9
64
1
64
…(12分)
∴X的數(shù)學(xué)期望E(X)=0×
27
64
+1×
27
64
+2×
9
64
+3×
1
64
=
3
4

…(13分)
(注:寫出X~B(3,
1
4
)
,P(X=k)=
C
k
3
(
1
4
)k(1-
1
4
)3-k
,k=0,1,2,3.請(qǐng)酌情給分)
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點(diǎn)A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值),線段AB的中點(diǎn)為D,與直線l:y=kx+b平行的切線的切點(diǎn)為C(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用k、b表示出C點(diǎn)、D點(diǎn)的坐標(biāo),并證明CD垂直于x軸;
(2)求△ABC的面積,證明△ABC的面積與k、b無(wú)關(guān),只與h有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連AC、BC,再作與AC、BC平行的切線,切點(diǎn)分別為E、F,小張馬上寫出了△ACE、△BCF的面積,由此小張求出了直線l與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an},{bn},{cn},已知a1=4,b1=3,c1=5,an+1=an,bn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*).
(1)求數(shù)列{cn-bn}的通項(xiàng)公式;
(2)求證:對(duì)任意n∈N*,bn+cn為定值;
(3)設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,若對(duì)任意n∈N*,都有p•(Sn-4n)∈[1,3],求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)為m+1(m>0)的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),點(diǎn)M是線段AB上的一點(diǎn),且
AM
=m
MB

(1)求點(diǎn)M的軌跡Γ的方程,并判斷軌跡Γ為何種圓錐曲線;
(2)設(shè)過(guò)點(diǎn)Q(
1
2
,0)且斜率不為0的直線交軌跡Γ于C,D兩點(diǎn).設(shè)點(diǎn)P在x軸上,且恒滿足
S△PQC
S△PQD
=
|PC|
|PD|
,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知U=R,集合M={x|x≤a-2或x≥a+3},N={x|-1≤x≤2}.
(1)若a=0,求(∁UM)∩(∁UN);
(2)若M∩N=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,射線OA、OB關(guān)于x軸對(duì)稱,且∠AOB=60°,在射線OA、OB上分別有動(dòng)點(diǎn)P、Q滿足:S△POQ=9,設(shè)△POQ的重心為G.
(1)求G點(diǎn)的軌跡方程;
(2)點(diǎn)G到直線PQ距離的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)設(shè)
CE
CC1
(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x
1+x2
的導(dǎo)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案