在直角坐標系xOy中,射線OA、OB關(guān)于x軸對稱,且∠AOB=60°,在射線OA、OB上分別有動點P、Q滿足:S△POQ=9,設(shè)△POQ的重心為G.
(1)求G點的軌跡方程;
(2)點G到直線PQ距離的最大值是多少?
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)出P,Q的坐標,可得G的坐標,利用△POQ=9,即可求G點的軌跡方程;
(2)取最大值時,a=b=
12
3
,即可求出點G到直線PQ距離的最大值.
解答: 解:(1)設(shè)P(acos30°,asin30°),Q(bcos(-30°),bsin(-30°)).
即P(
3
2
a,
1
2
a),Q(
3
2
b,-
1
2
b)(a>0,b>0)
設(shè)G(x,y),則x=
1
3
3
2
(a+b)且y=
1
3
1
2
(a-b),
∴a=
3
x+3y,b=
3
x-3y.
又S△POQ=
1
2
absin60°=
3
4
ab=9,即ab=12
3
,
∴3x2-9y2=12
3
,x≥2
43
;
(2)由題意,取最大值時,a=b=
12
3

直線PQ的方程為x=3
43
,dmax=3
43
-2
43
=
43
點評:本題考查軌跡方程,考查代入法的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

為了尋找馬航MH370殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在港口北偏東β角的方向上有一個給科考船補給物資的小島A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.現(xiàn)指揮部需要緊急征調(diào)位于港口O正東m海里的B處的補給船,速往小島A裝上補給物資供給科考船.該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測算當兩船運行的航線與海岸線OB圍成的三角形OBC的面積S最小時,這種補給方案最優(yōu).
(1)求S關(guān)于m的函數(shù)關(guān)系式S(m);
(2)應(yīng)征調(diào)位于港口正東多少海里處的補給船只,補給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用0~9這10個數(shù),可以組成多少個無重復數(shù)字且能被3整除的三位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在某批次的某種燈泡中,隨機地抽取200個樣品,并對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于500天的燈泡是優(yōu)等品,壽命小于300天的燈泡是次品,其余的燈泡是正品.
壽命(天) 頻數(shù) 頻率
[100,200) 20 0.10
[200,300) 30 a
[300,400) 70 0.35
[400,500) b 0.15
[500,600) 50 0.25
合計 200 1
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出a,b的值;
(Ⅱ)某人從燈泡樣品中隨機地購買了n(n∈N*)個,如果這n個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求n的最小值;
(Ⅲ)某人從這個批次的燈泡中隨機地購買了3個進行使用,若以上述頻率作為概率,用X表示此人所購買的燈泡中次品的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知經(jīng)過點P(0,2),且與橢圓C:
x2
4
+
y2
2
=1相切的直線有兩條,分別為m,n.
(1)求直線m,n的方程;
(2)設(shè)直線m,n與橢圓C的兩切點分別為C、D(其中C在y軸左側(cè),D在y軸右側(cè)),分別過C、D兩點作相應(yīng)切線的垂線l1、l2,且l1∩l2=A,橢圓的左右焦點分別為F1、F2,求
F1A
F2A
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅.私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;

(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行進行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x2
a
+
y2
b
=1(a>0).
(Ⅰ)若直線x+y+c=0與曲線E:
x2
a
+
y2
b
=1(a>0)相交于A,B兩點,O是坐標原點,且
OP
=
1
2
OA
+
OB
),若直線OP的斜率為
1
2
,求曲線E的離心率;
(Ⅱ)當b=-4時,求y2+2x的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線:y=x+b和圓x2+y2+2x-2y+1=0.
(1)若直線和圓相切,求直線的方程;
(2)若b=1,求直線和圓相交的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m>n>0,試比較a=
m
1+m
,b=
n
1+n
,c=
m+n
1+m+n
的大小關(guān)系.

查看答案和解析>>

同步練習冊答案