已知直三棱柱中,,是中點(diǎn),是中點(diǎn).
(1)求三棱柱的體積;
(2)求證:;
(3)求證:∥面.
(1) ;(2)、(3)證明如下:
解析試題分析:(1)該棱柱為直棱柱其體積公式為,所以;
(2)利用面面垂直來(lái)證明線線垂直,∵為直棱柱,∴面面,又,
∴面,∴ ;
(3)利用面面平行來(lái)證明線面平行,取中點(diǎn),則∥,∥,∴面∥面,
面∴∥面 .
試題解析:
(1) 3分
(2)∵,∴為等腰三角形
∵為中點(diǎn),∴ 4分
∵為直棱柱,∴面面 5分
∵面面,面,
∴面 6分
∴ 7分
(3)取中點(diǎn),連結(jié),, 8分
∵分別為的中點(diǎn)
∴∥,∥, 9分
∴面∥面 11分
面
∴∥面 . 12分
考點(diǎn):本題考查直棱柱的體積公式;線線垂直、線面垂直、及面面平行、線面平行的證明和轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在棱長(zhǎng)為的正方體中,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上,且滿足.
(1)求證:;
(2)在棱上確定一點(diǎn),使、、、四點(diǎn)共面,并求此時(shí)的長(zhǎng);
(3)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖四棱錐中,底面是平行四邊形,平面是的中點(diǎn),.
(1)試判斷直線與平面的位置關(guān)系,并予以證明;
(2)若四棱錐體積為 ,,求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形所在的平面與正方形所在的平面相互垂直,是的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線就和兩平面的交線平行.
請(qǐng)對(duì)上面定理加以證明,并說(shuō)出定理的名稱及作用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com