sin(2π-α)cos(
π
3
+2α)cos(π-α)
tan(α-3π)sin(
π
2
+α)sin(
6
-2α)
=(  )
A、-cosαB、cosα
C、sinαD、-sinα
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:利用三角函數(shù)的誘導(dǎo)公式分別化簡(jiǎn)分子分母,注意符號(hào).
解答: 解:原式=-
-sinαcosαcos(
π
3
+2α)
-tanαcosαsin(
π
6
-2α)
=-
sinαsin(
π
6
-2α)
sinα
cosα
sin(
π
6
-2α)
=-cosα;
故選A.
點(diǎn)評(píng):本題開(kāi)考查了三角函數(shù)的誘導(dǎo)公式運(yùn)用;熟記誘導(dǎo)公式口訣,注意符號(hào),利用“奇變偶不變,符號(hào)看象限”化簡(jiǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,且nSn+1-(n+1)Sn=n(n+1)(n∈N+),則過(guò)A(n,an)和B(n+2,an+2)的直線的一個(gè)方向向量的坐標(biāo)可以是(  )
A、(2,-4)
B、(-1,-1)
C、(-
1
4
,-
1
2
D、(1,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x-y)10的展開(kāi)式中,系數(shù)最小的項(xiàng)是( 。
A、第4項(xiàng)B、第5項(xiàng)
C、第6項(xiàng)D、第7項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β是銳角,且α≠45°,若cos(α-β)=sin(α+β),則tanβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次測(cè)驗(yàn)中,某道多項(xiàng)選擇題有4個(gè)選項(xiàng),恰好選中全部正確選項(xiàng)得6分,恰好選中部分正確選項(xiàng)得2分選中錯(cuò)誤選項(xiàng)或不選得0分.現(xiàn)已知此題有兩個(gè)正確選項(xiàng),一考生選擇每個(gè)選項(xiàng)的概率都為
3
4

(Ⅰ)求此考生的答案中至少包含一個(gè)正確選項(xiàng)的概率;
(Ⅱ)求此考生此題得分ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,使得f(-x)=-f(x),則稱(chēng)f(x)為“局部奇函數(shù)”.若f(x)=2x+m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“l(fā)gx,lgy,lgz成等差數(shù)列”是“y2=xz”成立的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log3(2x2+x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)x,y滿足x+4y-xy=0,則x+2y的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案