精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=lnx+
1-x
ax
,其中a為大于零的常數.
(Ⅰ)若函數f(x)在區(qū)間[1,+∞)上單調遞增,求a的取值范圍;
(Ⅱ)求函數f(x)在區(qū)間[1,2]上的最小值;
(Ⅲ)求證:對于任意的n≥2,n∈N*,都有l(wèi)nn>
1
22
+
1
32
+…+
1
n2
成立.
考點:導數在最大值、最小值問題中的應用,利用導數研究函數的單調性
專題:計算題,證明題,導數的綜合應用,不等式
分析:(Ⅰ)求導,將函數f(x)在區(qū)間[1,+∞)上單調遞增化為導數恒不小于0,從而求a的取值范圍;
(Ⅱ)討論函數f(x)在區(qū)間[1,2]上的單調性,從而確定函數f(x)在區(qū)間[1,2]上的最小值;
(Ⅲ)注意到當a=1時,f(x)=lnx+
1
x
-1在區(qū)間[1,+∞)上單調遞增,則可得到f(
n
n-1
)>f(1),從而可得lnn-ln(n-1)>
1
n
對于任意的n≥2,n∈N*恒成立;化lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+(ln3-ln2)+(ln2-ln1)
1
n
+
1
n-1
+…+
1
3
+
1
2
,利用放縮法證明對于任意的n≥2,n∈N*,都有l(wèi)nn>
1
22
+
1
32
+…+
1
n2
成立.
解答: 解:(Ⅰ)由題意,f′(x)=
1
x
-
1
ax2
=
ax-1
ax2 
,
∵a為大于零的常數,
若使函數f(x)在區(qū)間[1,+∞)上單調遞增,
則使ax-1≥0在區(qū)間[1,+∞)上恒成立,
即a-1≥0,
故a≥1;
(Ⅱ)①當a≥1時,f(x)在區(qū)間[1,2]上單調遞增,
則fmin(x)=f(1)=0;
②當0<a≤
1
2
時,f′(x)在區(qū)間[1,2]恒不大于0,
f(x)在區(qū)間[1,2]上單調遞減,
則fmin(x)=f(2)=ln2-
1
2a

③當
1
2
<a<1時,令f′(x)=0可解得,x=
1
a
∈(1,2);
易知f(x)在區(qū)間[1,
1
a
]單調遞減,在[
1
a
,2]上單調遞增,
則fmin(x)=f(
1
a
)=ln
1
a
+1-
1
a
;
綜上所述,
①當a≥1時,fmin(x)=0;
②當
1
2
<a<1時,fmin(x)=ln
1
a
+1-
1
a

③當0<a≤
1
2
時,fmin(x)=ln2-
1
2a

(Ⅲ)證明:易知當a=1時,f(x)=lnx+
1
x
-1在區(qū)間[1,+∞)上單調遞增,
故當n≥2時,∵
n
n-1
>1,
∴f(
n
n-1
)>f(1),
即ln
n
n-1
+
n-1
n
-1>0,
化簡可得,
lnn-ln(n-1)>
1
n
對于任意的n≥2,n∈N*恒成立;
則lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+(ln3-ln2)+(ln2-ln1)
1
n
+
1
n-1
+…+
1
3
+
1
2

1
22
+
1
32
+…+
1
n2

∴對于任意的n≥2,n∈N*,都有l(wèi)nn>
1
22
+
1
32
+…+
1
n2
成立.
點評:本題考查了函數的導數的綜合應用,同時考查了不等式的證明,利用到了放縮法,同時考查了分類討論的數學思想,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知x∈R,i為虛數單位,若(1-2i)(x+i)=4-3i,則x的值等于( 。
A、-6B、-2C、2D、6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中a1=1,an+1=2an+an2+bn+c(n∈N*).a,b,c為實常數.
(Ⅰ)若a=b=0,c=1,求數列{an}的通項公式;
(Ⅱ)若a=-1,b=3,c=0.
①是否存在常數λ,μ使得數列{an+λn2+μn}是等比數列,若存在,求出λ,μ的值,若不存在,請說明理由;
②設 bn=
1
an+n-2n-1
,Sn=b1+b2+b3+…+bn.證明:n≥2時,Sn
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,a1+a2+a3+…+an=n-an(n∈N*).
(1)求a1,a2,a3的值;
(2)求證:數列{an-1}是等比數列;
(3)設bn=an-1,且cn=bn(n-n2)(n∈N*),如果對任意n∈N*,都有cn+
1
4
t≤t2,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A={-3,4},B={x|x2-2ax+b=0},B≠∅,且A∩B=B,求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是公差不等于0的等差數列,a1=2且a2,a4,a5成等比數列,若bn=
1
n(an+2)
,則數列{bn}的前n項餓的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3+x 
1
3
,若不等式f(4x-m•2x+1)-f(4-x-m•2-x+1)≥0恒成立,則實數m的取值范圍是(  )
A、m≤
1
2
B、m≥
1
2
C、m≤1
D、m≥1

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,D是△AEC邊AE延長線上一點,過點D作∠ABD=∠AEC,交AC于點B.求證:AB•AC=AE•AD.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=
12
13
,求sinα,cosα.

查看答案和解析>>

同步練習冊答案