【題目】對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))y=f(x)”.有同學(xué)發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”,任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是“對(duì)稱中心”.請(qǐng)你將這一發(fā)現(xiàn)作為條件,則函數(shù)f(x)=x3﹣3x2+3x的對(duì)稱中心為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)y=log4(x2﹣2x+5)有以下4個(gè)結(jié)論:其中正確的有 ①定義域?yàn)镽; ②遞增區(qū)間為[1,+∞);
③最小值為1; ④圖像恒在x軸的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“若a+b+c≥0,abc≤0,則a、b、c三個(gè)實(shí)數(shù)中最多有一個(gè)小于零”的反設(shè)內(nèi)容為( )
A.a、b、c三個(gè)實(shí)數(shù)中最多有一個(gè)不大于零
B.a、b、c三個(gè)實(shí)數(shù)中最多有兩個(gè)小于零
C.a、b、c三個(gè)實(shí)數(shù)中至少有兩個(gè)小于零
D.a、b、c三個(gè)實(shí)數(shù)中至少有一個(gè)不大于零
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d)若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥﹣2時(shí),f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=x2﹣mcosx+m2+3m﹣8有唯一零點(diǎn),則滿足條件的實(shí)數(shù)m組成的集合為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l過(guò)點(diǎn)(﹣1,2)且與直線2x﹣3y+4=0平行,則直線l的方程是( 。
A.3x+2y﹣1=0
B.3x+2y+7=0
C.2x﹣3y+5=0
D.2x﹣3y+8=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+4)=f(x),則f(99)等于( )
A.﹣1
B.0
C.1
D.99
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知e為自然對(duì)數(shù)的底數(shù),則曲線y=2ex在點(diǎn)(1,2e)處的切線斜率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com