【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=4 ,∠CDA=120°,點N在線段PB上,且PN=2.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.
【答案】
(1)證明:∵△ABC是正三角形,M是AC中點,
∴BM⊥AC,即BD⊥AC,
又∵PA⊥平面ABCD,∴PA⊥BD,
又PA∩AC=A,∴BD⊥平面PAC,
∴BD⊥PC.
(2)證明:在正△ABC中,BM=6,
在△ACD中,∵M為AC中點,DM⊥AC,∴AD=CD,
∠ADC=120°,∴DM=2,
∴ = ,
在Rt△PAB中,PA=4,AB=4 ,PB=8.
∴ = = ,∴MN∥PD,
又MN平面PDC,PD平面平面PDC,
∴MN∥平面PDC.
(3)解:∵∠BAD=∠BAC+∠CAD=90°,
∴AB⊥AD,以A為坐標原點,分別以AB、AD、AP所在直線為x軸,y軸,z軸,建立空間直角坐標系,
∴B(4 ,0,0),C(2 ,6,0),D(0,4,0),P(0,0,4),
=(2 ,6,﹣4), =(4 ,0,﹣4),
由(2)知 =(4 ,﹣4,0)是平面PAC的法向量,
設平面PBC的一個法向量為 =(x,y,z),
則 ,即 ,取z=3,得 =( ),
設二面角A﹣PC﹣B的平面角為θ,
則cosθ= = = ,
∴二面角A﹣PC﹣B的余弦值為 .
【解析】(1)推導出BD⊥AC,PA⊥BD,從而BD⊥平面PAC,由此能證明BD⊥PC.(2)推導出DM⊥AC,AD=CD,DM=2, = ,從而MN∥PD,由此能證明MN∥平面PDC.(3)以A為坐標原點,分別以AB、AD、AP所在直線為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣PC﹣B的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點的個數(shù);
(2)當a=0時,關于x的方程f(x)=m(m∈R)有2個不同的實數(shù)根x1 , x2 , 證明:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的右焦點為,點分別是橢圓的上、下頂點,點是直線上的一個動點(與軸的交點除外),直線交橢圓于另一個點.
(1)當直線經(jīng)過橢圓的右焦點時,求的面積;
(2)①記直線的斜率分別為,求證:為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) .
(1)用含a的式子表示b;
(2)令F(x)= ,其圖象上任意一點P(x0 , y0)處切線的斜率 恒成立,求實數(shù)a的取值范圍;
(3)若a=2,試求f(x)在區(qū)間 上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)證明:函數(shù)f(x)=(x﹣a)2lnx,a∈R的圖象恒經(jīng)過一個定點;
(2)若函數(shù)h(x)= f′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)證明:函數(shù)f(x)=(x﹣a)2lnx,a∈R的圖象恒經(jīng)過一個定點;
(2)若函數(shù)h(x)= f′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出如下四個命題: ①若“p且q”為假命題,則p、q均為假命題;
②命題“若,則 ”的否命題為“若,則”;
③命題“ ”的否定是“”;
④“ ”是“ ”的充分必要條件. 其中正確的命題個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com